Chapter 5: Q7.6-21E (page 267)
For the matrix A, find real closed formulas for the trajectorywhere . Draw a rough sketch
Chapter 5: Q7.6-21E (page 267)
For the matrix A, find real closed formulas for the trajectorywhere . Draw a rough sketch
All the tools & learning materials you need for study success - in one app.
Get started for freeQuestion: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.
6. \(\left[ {\begin{array}{*{20}{c}}3&- 4\\4&8\end{array}} \right]\)
Compute the quantities in Exercises 1-8 using the vectors
\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)
2. \({\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} ,{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} ,\,\,{\mathop{\rm and}\nolimits} \,\,\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}\)
Consider an invertible n × n matrix A such that the zero state is a stable equilibrium of the dynamical system What can you say about the stability of the systems
Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.
Question: Construct a random integer-valued \(4 \times 4\) matrix \(A\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.