Chapter 5: Q7.6-20E (page 267)
For the Matrices A find real closed formulas for the trajectory where
Chapter 5: Q7.6-20E (page 267)
For the Matrices A find real closed formulas for the trajectory where
All the tools & learning materials you need for study success - in one app.
Get started for freeQuestion: Is \(\left( {\begin{array}{*{20}{c}}{ - 1 + \sqrt 2 }\\1\end{array}} \right)\) an eigenvalue of \(\left( {\begin{array}{*{20}{c}}2&1\\1&4\end{array}} \right)\)? If so, find the eigenvalue.
Question 20: Use a property of determinants to show that \(A\) and \({A^T}\) have the same characteristic polynomial.
Question: In Exercises \({\bf{3}}\) and \({\bf{4}}\), use the factorization \(A = PD{P^{ - {\bf{1}}}}\) to compute \({A^k}\) where \(k\) represents an arbitrary positive integer.
3. \(\left( {\begin{array}{*{20}{c}}a&0\\{3\left( {a - b} \right)}&b\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0\\3&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}a&0\\0&b\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\{ - 3}&1\end{array}} \right)\)
Suppose \(A\) is diagonalizable and \(p\left( t \right)\) is the characteristic polynomial of \(A\). Define \(p\left( A \right)\) as in Exercise 5, and show that \(p\left( A \right)\) is the zero matrix. This fact, which is also true for any square matrix, is called the Cayley-Hamilton theorem.
Question: Is \(\left( {\begin{array}{*{20}{c}}1\\4\end{array}} \right)\) an eigenvalue of \(\left( {\begin{array}{*{20}{c}}{ - 3}&1\\{ - 3}&8\end{array}} \right)\)? If so, find the eigenvalue.
What do you think about this solution?
We value your feedback to improve our textbook solutions.