Chapter 5: Q7.6-19E (page 267)
For the Matrices A find real closed formulas for the trajectory where
Chapter 5: Q7.6-19E (page 267)
For the Matrices A find real closed formulas for the trajectory where
All the tools & learning materials you need for study success - in one app.
Get started for free19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).
23. Let \(p\) be the polynomial in Exercise \({\bf{22}}\), and suppose the equation \(p\left( t \right) = {\bf{0}}\) has distinct roots \({\lambda _{\bf{1}}},{\lambda _{\bf{2}}},{\lambda _{\bf{3}}}\). Let \(V\) be the Vandermonde matrix
\(V{\bf{ = }}\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{1}}&{\bf{1}}\\{{\lambda _{\bf{1}}}}&{{\lambda _{\bf{2}}}}&{{\lambda _{\bf{3}}}}\\{\lambda _{\bf{1}}^{\bf{2}}}&{\lambda _{\bf{2}}^{\bf{2}}}&{\lambda _{\bf{3}}^{\bf{2}}}\end{aligned}} \right)\)
(The transpose of \(V\) was considered in Supplementary Exercise \({\bf{11}}\) in Chapter \({\bf{2}}\).) Use Exercise \({\bf{22}}\) and a theorem from this chapter to deduce that \(V\) is invertible (but do not compute \({V^{{\bf{ - 1}}}}\)). Then explain why \({V^{{\bf{ - 1}}}}{C_p}V\) is a diagonal matrix.
Let\(\varepsilon = \left\{ {{{\bf{e}}_1},{{\bf{e}}_2},{{\bf{e}}_3}} \right\}\) be the standard basis for \({\mathbb{R}^3}\),\(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2},{{\bf{b}}_3}} \right\}\) be a basis for a vector space \(V\) and\(T:{\mathbb{R}^3} \to V\) be a linear transformation with the property that
\(T\left( {{x_1},{x_2},{x_3}} \right) = \left( {{x_3} - {x_2}} \right){{\bf{b}}_1} - \left( {{x_1} - {x_3}} \right){{\bf{b}}_2} + \left( {{x_1} - {x_2}} \right){{\bf{b}}_3}\)
Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).
10. \(\left( {\begin{array}{*{20}{c}}{\bf{2}}&{\bf{3}}\\{\bf{4}}&{\bf{1}}\end{array}} \right)\)
Show that \(I - A\) is invertible when all the eigenvalues of \(A\) are less than 1 in magnitude. (Hint: What would be true if \(I - A\) were not invertible?)
In Exercises 9–16, find a basis for the eigenspace corresponding to each listed eigenvalue.
10. \(A = \left( {\begin{array}{*{20}{c}}{10}&{ - 9}\\4&{ - 2}\end{array}} \right)\), \(\lambda = 4\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.