Chapter 5: Q7.4-25E (page 267)
Consider an invertible n × n matrix A such that the zero state is a stable equilibrium of the dynamical system What can you say about the stability of the systems
Short Answer
The given value is unstable
Chapter 5: Q7.4-25E (page 267)
Consider an invertible n × n matrix A such that the zero state is a stable equilibrium of the dynamical system What can you say about the stability of the systems
The given value is unstable
All the tools & learning materials you need for study success - in one app.
Get started for freeQuestion: Construct a random integer-valued \(4 \times 4\) matrix \(A\).
Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.
4. \(\left[ {\begin{array}{*{20}{c}}5&-3\\-4&3\end{array}} \right]\)
For the matrices A in Exercises 1 through 12, find closed formulas for , where t is an arbitrary positive integer. Follow the strategy outlined in Theorem 7.4.2 and illustrated in Example 2. In Exercises 9 though 12, feel free to use technology.
Let\(D = \left\{ {{{\bf{d}}_1},{{\bf{d}}_2}} \right\}\) and \(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2}} \right\}\) be bases for vector space \(V\) and \(W\), respectively. Let \(T:V \to W\) be a linear transformation with the property that
\(T\left( {{{\bf{d}}_1}} \right) = 2{{\bf{b}}_1} - 3{{\bf{b}}_2}\), \(T\left( {{{\bf{d}}_2}} \right) = - 4{{\bf{b}}_1} + 5{{\bf{b}}_2}\)
Find the matrix for \(T\) relative to \(D\), and\(B\).
Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).
7. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{6}}&{{\bf{ - 1}}}\end{array}} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.