Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{ {20}{c}}{\bf{2}}\\{\bf{0}}\\{ - {\bf{1}}}\\{\bf{2}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{ {20}{c}}{\bf{0}}\\{ - {\bf{2}}}\\{\bf{2}}\\{\bf{1}}\end{aligned}} \right)\), and let \({{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{ {20}{c}}{ - {\bf{2}}}\\{\bf{1}}\\{\bf{0}}\\{\bf{2}}\end{aligned}} \right)\)be the orthogonal set \(\left\{ {{{\bf{v}}_{\bf{1}}},\,{{\bf{v}}_{\bf{2}}},\,{{\bf{v}}_{\bf{3}}},\,{{\bf{v}}_{\bf{4}}}} \right\}\). Determine whether \({{\bf{p}}_i}\) is in span S, \({\bf{aff}}\,S\), or \({\bf{conv}}\,\,S\).

a. \({{\bf{p}}_{\bf{1}}}\) b. \({{\bf{p}}_{\bf{2}}}\) c. \({{\bf{p}}_{\bf{3}}}\) d. \({{\bf{p}}_{\bf{4}}}\)

Short Answer

Expert verified

\({{\bf{p}}_1} \notin {\rm{conv}}\,\,S\) and \({{\bf{p}}_2} \in {\rm{conv}}\,\,S\).

Step by step solution

01

Find the projection of \({{\bf{p}}_{\bf{1}}}\), \({{\bf{p}}_{\bf{2}}}\), and \({{\bf{p}}_{\bf{3}}}\)

As S is an orthogonal set, the projection of \({{\bf{p}}_1}\) is:

\({\rm{pro}}{{\rm{j}}_w}{{\bf{p}}_1} = \frac{{{{\bf{p}}_1} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot {{\bf{v}}_1}}}{{\bf{v}}_1} + \frac{{{{\bf{p}}_1} \cdot {{\bf{v}}_2}}}{{{{\bf{v}}_2} \cdot {{\bf{v}}_2}}}{{\bf{v}}_2} + \frac{{{{\bf{p}}_1} \cdot {{\bf{v}}_3}}}{{{{\bf{v}}_3} \cdot {{\bf{v}}_3}}}{{\bf{v}}_3}\)

The projection of \({{\bf{p}}_{\bf{2}}}\) is:

\({\rm{pro}}{{\rm{j}}_w}{{\bf{p}}_2} = \frac{{{{\bf{p}}_2} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot {{\bf{v}}_1}}}{{\bf{v}}_1} + \frac{{{{\bf{p}}_2} \cdot {{\bf{v}}_2}}}{{{{\bf{v}}_2} \cdot {{\bf{v}}_2}}}{{\bf{v}}_2} + \frac{{{{\bf{p}}_2} \cdot {{\bf{v}}_3}}}{{{{\bf{v}}_3} \cdot {{\bf{v}}_3}}}{{\bf{v}}_3}\)

The projection of \({{\bf{p}}_3}\) is:

\({\rm{pro}}{{\rm{j}}_w}{{\bf{p}}_3} = \frac{{{{\bf{p}}_3} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot {{\bf{v}}_1}}}{{\bf{v}}_1} + \frac{{{{\bf{p}}_3} \cdot {{\bf{v}}_2}}}{{{{\bf{v}}_2} \cdot {{\bf{v}}_2}}}{{\bf{v}}_2} + \frac{{{{\bf{p}}_3} \cdot {{\bf{v}}_3}}}{{{{\bf{v}}_3} \cdot {{\bf{v}}_3}}}{{\bf{v}}_3}\)

The projection of \({{\bf{p}}_4}\) is:

\({\rm{pro}}{{\rm{j}}_w}{{\bf{p}}_4} = \frac{{{{\bf{p}}_4} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot {{\bf{v}}_1}}}{{\bf{v}}_1} + \frac{{{{\bf{p}}_4} \cdot {{\bf{v}}_2}}}{{{{\bf{v}}_2} \cdot {{\bf{v}}_2}}}{{\bf{v}}_2} + \frac{{{{\bf{p}}_4} \cdot {{\bf{v}}_3}}}{{{{\bf{v}}_3} \cdot {{\bf{v}}_3}}}{{\bf{v}}_3}\)

02

Find the product in the projection of \({{\bf{p}}_{\bf{1}}}\)

The product for projection \({{\bf{p}}_{\bf{1}}}\):

\(\begin{aligned}{c}{{\bf{p}}_{\bf{1}}} \cdot {{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{ {20}{c}}{ - 1}\\2\\{ - \frac{3}{2}}\\{\frac{5}{2}}\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}2\\0\\{ - 1}\\2\end{aligned}} \right)\\ = \frac{9}{2}\end{aligned}\), \(\begin{aligned}{c}{{\bf{v}}_{\bf{1}}} \cdot {{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{ {20}{c}}2\\0\\{ - 1}\\2\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}2\\0\\{ - 1}\\2\end{aligned}} \right)\\ = 9\end{aligned}\)

And

\(\begin{aligned}{c}{{\bf{p}}_{\bf{1}}} \cdot {{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{ {20}{c}}{ - 1}\\2\\{ - \frac{3}{2}}\\{\frac{5}{2}}\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}0\\{ - 2}\\2\\1\end{aligned}} \right)\\ = - \frac{9}{2}\end{aligned}\), \(\begin{aligned}{c}{{\bf{v}}_{\bf{2}}} \cdot {{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{ {20}{c}}0\\{ - 2}\\2\\1\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}0\\{ - 2}\\2\\1\end{aligned}} \right)\\ = 9\end{aligned}\)

And

\(\begin{aligned}{c}{{\bf{p}}_{\bf{1}}} \cdot {{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{ {20}{c}}{ - 1}\\2\\{ - \frac{3}{2}}\\{\frac{5}{2}}\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}{ - 2}\\1\\0\\2\end{aligned}} \right)\\ = 9\end{aligned}\), \(\begin{aligned}{c}{{\bf{v}}_{\bf{3}}} \cdot {{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{ {20}{c}}{ - 2}\\1\\0\\2\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}{ - 2}\\1\\0\\2\end{aligned}} \right)\\ = 9\end{aligned}\)

03

Find the product in the projection of \({{\bf{p}}_{\bf{2}}}\)

The product for projection of \({{\bf{p}}_2}\) is:

\(\begin{aligned}{c}{{\bf{p}}_2} \cdot {{\bf{v}}_2} = \left( {\begin{aligned}{ {20}{c}}{ - \frac{1}{2}}\\0\\{\frac{1}{4}}\\{\frac{7}{4}}\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}2\\0\\{ - 1}\\2\end{aligned}} \right)\\ = \frac{9}{4}\end{aligned}\), \(\begin{aligned}{c}{{\bf{v}}_{\bf{1}}} \cdot {{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{ {20}{c}}2\\0\\{ - 1}\\2\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}2\\0\\{ - 1}\\2\end{aligned}} \right)\\ = 9\end{aligned}\)

And,

\(\begin{aligned}{c}{{\bf{p}}_2} \cdot {{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{ {20}{c}}{ - \frac{1}{2}}\\0\\{\frac{1}{4}}\\{\frac{7}{4}}\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}0\\{ - 2}\\2\\1\end{aligned}} \right)\\ = \frac{9}{4}\end{aligned}\), \(\begin{aligned}{c}{{\bf{v}}_{\bf{2}}} \cdot {{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{ {20}{c}}0\\{ - 2}\\2\\1\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}0\\{ - 2}\\2\\1\end{aligned}} \right)\\ = 9\end{aligned}\)

And,

\(\begin{aligned}{c}{{\bf{p}}_2} \cdot {{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{ {20}{c}}{ - \frac{1}{2}}\\0\\{\frac{1}{4}}\\{\frac{7}{4}}\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}{ - 2}\\1\\0\\2\end{aligned}} \right)\\ = \frac{9}{2}\end{aligned}\), \(\begin{aligned}{c}{{\bf{v}}_{\bf{3}}} \cdot {{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{ {20}{c}}{ - 2}\\1\\0\\2\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}{ - 2}\\1\\0\\2\end{aligned}} \right)\\ = 9\end{aligned}\)

04

Find the product in the projection of \({{\bf{p}}_{\bf{3}}}\)

The product for projection of \({{\bf{p}}_3}\) is:

\(\begin{aligned}{c}{{\bf{p}}_3} \cdot {{\bf{v}}_2} = \left( {\begin{aligned}{ {20}{c}}6\\{ - 4}\\1\\{ - 1}\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}2\\0\\{ - 1}\\2\end{aligned}} \right)\\ = 9\end{aligned}\), \(\begin{aligned}{c}{{\bf{v}}_{\bf{1}}} \cdot {{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{ {20}{c}}2\\0\\{ - 1}\\2\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}2\\0\\{ - 1}\\2\end{aligned}} \right)\\ = 9\end{aligned}\)

And,

\(\begin{aligned}{c}{{\bf{p}}_3} \cdot {{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{ {20}{c}}6\\{ - 4}\\1\\{ - 1}\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}0\\{ - 2}\\2\\1\end{aligned}} \right)\\ = 9\end{aligned}\), \(\begin{aligned}{c}{{\bf{v}}_{\bf{2}}} \cdot {{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{ {20}{c}}0\\{ - 2}\\2\\1\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}0\\{ - 2}\\2\\1\end{aligned}} \right)\\ = 9\end{aligned}\)

And,

\(\begin{aligned}{c}{{\bf{p}}_3} \cdot {{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{ {20}{c}}6\\{ - 4}\\1\\{ - 1}\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}{ - 2}\\1\\0\\2\end{aligned}} \right)\\ = - 18\end{aligned}\), \(\begin{aligned}{c}{{\bf{v}}_{\bf{3}}} \cdot {{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{ {20}{c}}{ - 2}\\1\\0\\2\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}{ - 2}\\1\\0\\2\end{aligned}} \right)\\ = 9\end{aligned}\)

05

Find the product in the projection of \({{\bf{p}}_{\bf{4}}}\)

The product for projection of \({{\bf{p}}_3}\) is:

\(\begin{aligned}{c}{{\bf{p}}_4} \cdot {{\bf{v}}_2} = \left( {\begin{aligned}{ {20}{c}}{ - 1}\\{ - 2}\\0\\4\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}2\\0\\{ - 1}\\2\end{aligned}} \right)\\ = 6\end{aligned}\), \(\begin{aligned}{c}{{\bf{v}}_{\bf{1}}} \cdot {{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{ {20}{c}}2\\0\\{ - 1}\\2\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}2\\0\\{ - 1}\\2\end{aligned}} \right)\\ = 9\end{aligned}\)

And,

\(\begin{aligned}{c}{{\bf{p}}_4} \cdot {{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{ {20}{c}}{ - 1}\\{ - 2}\\0\\4\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}0\\{ - 2}\\2\\1\end{aligned}} \right)\\ = 8\end{aligned}\), \(\begin{aligned}{c}{{\bf{v}}_{\bf{2}}} \cdot {{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{ {20}{c}}0\\{ - 2}\\2\\1\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}0\\{ - 2}\\2\\1\end{aligned}} \right)\\ = 9\end{aligned}\)

And,

\(\begin{aligned}{c}{{\bf{p}}_4} \cdot {{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{ {20}{c}}{ - 1}\\{ - 2}\\0\\4\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}{ - 2}\\1\\0\\2\end{aligned}} \right)\\ = 8\end{aligned}\), \(\begin{aligned}{c}{{\bf{v}}_{\bf{3}}} \cdot {{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{ {20}{c}}{ - 2}\\1\\0\\2\end{aligned}} \right) \cdot \left( {\begin{aligned}{ {20}{c}}{ - 2}\\1\\0\\2\end{aligned}} \right)\\ = 9\end{aligned}\)

06

Substitute values in the equation of projections

The projection \({{\bf{p}}_1}\) is:

\(\begin{aligned}{c}{\rm{pro}}{{\rm{j}}_w}{{\bf{p}}_1} = \frac{{\frac{9}{2}}}{9}{{\bf{v}}_1} + \frac{{\left( { - \frac{9}{2}} \right)}}{9}{{\bf{v}}_2} + \frac{9}{9}{{\bf{v}}_3}\\ = \frac{1}{2}{{\bf{v}}_1} - \frac{1}{2}{{\bf{v}}_2} + {{\bf{v}}_3}\end{aligned}\)

The projection \({{\bf{p}}_2}\) is:

\(\begin{aligned}{c}{\rm{pro}}{{\rm{j}}_w}{{\bf{p}}_2} = \left( {\frac{{\frac{9}{4}}}{9}} \right){{\bf{v}}_1} + \left( {\frac{{\frac{9}{4}}}{9}} \right){{\bf{v}}_2} + \left( {\frac{{\frac{9}{2}}}{9}} \right){{\bf{v}}_3}\\ = \frac{1}{4}{{\bf{v}}_1} + \frac{1}{4}{{\bf{v}}_2} + \frac{1}{2}{{\bf{v}}_3}\end{aligned}\)

The projection \({{\bf{p}}_3}\) is:

\(\begin{aligned}{c}{\rm{pro}}{{\rm{j}}_w}{{\bf{p}}_3} = \left( {\frac{9}{9}} \right){{\bf{v}}_1} + \left( {\frac{9}{9}} \right){{\bf{v}}_2} + \left( {\frac{{ - 18}}{9}} \right){{\bf{b}}_3}\\ = {{\bf{v}}_1} + {{\bf{v}}_2} - 2{{\bf{v}}_3}\end{aligned}\)

The projection \({{\bf{p}}_4}\) is:

\(\begin{aligned}{c}{\rm{pro}}{{\rm{j}}_w}{{\bf{p}}_4} = \frac{6}{9}{{\bf{v}}_1} + \frac{8}{9}{{\bf{v}}_2} + \frac{8}{9}{{\bf{v}}_3}\\ = \frac{2}{3}{{\bf{v}}_1} + \frac{8}{9}{{\bf{v}}_2} + \frac{8}{9}{{\bf{v}}_3}\end{aligned}\)

Following projections can be made from the projections:

  1. For \({{\bf{p}}_1}\), sm of coefficients is 1, so \({{\bf{p}}_1}\) is affine of S, but all coefficients are not positive therefore \({{\bf{p}}_1}\) is not conv of S. \({{\bf{p}}_1}\) is a span of S.
  2. For \({{\bf{p}}_2}\), the sum of coefficients is 1, so \({{\bf{p}}_1}\) is affine of S and all coefficients are positive, so \({{\bf{p}}_2}\) is conv S. \({{\bf{p}}_2}\) is a span of S.
  3. For \({{\bf{p}}_3}\), the sum of coefficients is not 1, so \({{\bf{p}}_3}\) is not affine of S. As all coefficients are not positive, \({{\bf{p}}_3}\) is not in conv S. \({{\bf{p}}_2}\) is a span of S.
  4. For \({{\bf{p}}_4}\), the sum of coefficients is not 1, so \({{\bf{p}}_3}\) is not affine of S. As all coefficients are not positive, \({{\bf{p}}_3}\) is not in conv S. \({{\bf{p}}_2}\) is a span of S.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Construct a random integer-valued \(4 \times 4\) matrix \(A\), and verify that \(A\) and \({A^T}\) have the same characteristic polynomial (the same eigenvalues with the same multiplicities). Do \(A\) and \({A^T}\) have the same eigenvectors? Make the same analysis of a \(5 \times 5\) matrix. Report the matrices and your conclusions.

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

9. \(\left( {\begin{array}{*{20}{c}}3&{ - 1}\\1&5\end{array}} \right)\)

Let \(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2},{{\bf{b}}_3}} \right\}\)be a basis for a vector space \(V\) and\(T:V \to {\mathbb{R}^2}\) be a linear transformation with the property that

\(T\left( {{x_1}{{\bf{b}}_1} + {x_2}{{\bf{b}}_2} + {x_3}{{\bf{b}}_3}} \right) = \left( {\begin{aligned}{2{x_1} - 4{x_2} + 5{x_3}}\\{ - {x_2} + 3{x_3}}\end{aligned}} \right)\)

Find the matrix for \(T\) relative to \(B\) and the standard basis for \({\mathbb{R}^2}\).

(M)The MATLAB command roots\(\left( p \right)\) computes the roots of the polynomial equation \(p\left( t \right) = {\bf{0}}\). Read a MATLAB manual, and then describe the basic idea behind the algorithm for the roots command.

Let\(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2},{{\bf{b}}_3}} \right\}\) be a basis for a vector space\(V\). Find \(T\left( {3{{\bf{b}}_1} - 4{{\bf{b}}_2}} \right)\) when \(T\) isa linear transformation from \(V\) to \(V\) whose matrix relative to \(B\) is

\({\left( T \right)_B} = \left( {\begin{aligned}0&{}&{ - 6}&{}&1\\0&{}&5&{}&{ - 1}\\1&{}&{ - 2}&{}&7\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free