Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If \(p\left( t \right) = {c_0} + {c_1}t + {c_2}{t^2} + ...... + {c_n}{t^n}\), define \(p\left( A \right)\) to be the matrix formed by replacing each power of \(t\) in \(p\left( t \right)\)by the corresponding power of \(A\) (with \({A^0} = I\) ). That is,

\(p\left( t \right) = {c_0} + {c_1}I + {c_2}{I^2} + ...... + {c_n}{I^n}\)

Show that if \(\lambda \) is an eigenvalue of A, then one eigenvalue of \(p\left( A \right)\) is\(p\left( \lambda \right)\).

Short Answer

Expert verified

It is proved that if \(\lambda \) is an eigenvalue of \(\lambda \), then one eigenvalue of \(p\left( A \right)\) is \(p\left( \lambda \right)\).

Step by step solution

01

Definition of eigenvalue

Eigenvalues are a special set of scalars associated with a linear system of equations that are sometimes also known as characteristic roots, characteristic values, proper values, or latent roots.

02

Step 2: Showing if is an eigenvalue of \(A\), then one eigenvalue of \(p\left( A \right)\) is \(p\left( \lambda  \right)\)

Suppose that\(\lambda \)is an eigenvalue of\(A\)with the corresponding eigenvector\({\rm{x}}\), that is, suppose that\(A{\rm{x}} = \lambda {\rm{x}},{\rm{x}} \ne 0\).

Then,

\(\begin{array}{r}p\left( A \right){\rm{x}} = \left( {{c_0}I + {c_1}A + \ldots + {c_n}{A^n}} \right){\rm{x}}\\ = {c_0}{\rm{x}} + {c_1}A{\rm{x}} + \ldots + {c_n}{A^n}{\rm{x}}\end{array}\)

From exercise 4 we know that\({A^n}{\rm{x}} = {\lambda ^n}{\rm{x}}\), so:

\(\begin{array}{c}p\left( A \right){\rm{x}} = {c_0}{\rm{x}} + {c_1}\lambda {\rm{x}} + \ldots + {c_n}{\lambda ^n}{\rm{x}}\\ = \left( {{c_0} + {c_1}\lambda + \ldots + {c_n}{\lambda ^n}} \right){\rm{x}}\\ = p(\lambda ){\rm{x}}\end{array}\).

Hence it is proved that \(\lambda \) is an eigenvalue of \(\lambda \), then one eigenvalue of \(p\left( A \right)\) is \(p\left( \lambda \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises \({\bf{3}}\) and \({\bf{4}}\), use the factorization \(A = PD{P^{ - {\bf{1}}}}\) to compute \({A^k}\) where \(k\) represents an arbitrary positive integer.

3. \(\left( {\begin{array}{*{20}{c}}a&0\\{3\left( {a - b} \right)}&b\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0\\3&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}a&0\\0&b\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\{ - 3}&1\end{array}} \right)\)

Let\(T:{{\rm P}_2} \to {{\rm P}_3}\) be a linear transformation that maps a polynomial \({\bf{p}}\left( t \right)\) into the polynomial \(\left( {t + 5} \right){\bf{p}}\left( t \right)\).

  1. Find the image of\({\bf{p}}\left( t \right) = 2 - t + {t^2}\).
  2. Show that \(T\) is a linear transformation.
  3. Find the matrix for \(T\) relative to the bases \(\left\{ {1,t,{t^2}} \right\}\) and \(\left\{ {1,t,{t^2},{t^3}} \right\}\).

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

15. \(\left( {\begin{array}{*{20}{c}}{\bf{7}}&{\bf{4}}&{{\bf{16}}}\\{\bf{2}}&{\bf{5}}&{\bf{8}}\\{{\bf{ - 2}}}&{{\bf{ - 2}}}&{{\bf{ - 5}}}\end{array}} \right)\)

For the matrices Afind real closed formulas for the trajectoryx(t+1)=Ax(t)wherex(0)=[01]. Draw a rough sketchA=[1-31.2-2.6]

Apply the results of Exercise \({\bf{15}}\) to find the eigenvalues of the matrices \(\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{2}}\\{\bf{2}}&{\bf{1}}&{\bf{2}}\\{\bf{2}}&{\bf{2}}&{\bf{1}}\end{aligned}} \right)\) and \(\left( {\begin{aligned}{*{20}{c}}{\bf{7}}&{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{7}}&{\bf{3}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{7}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{7}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{7}}\end{aligned}} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free