Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 9–14, classify the origin as an attractor, repeller, or saddle point of the dynamical system \({{\rm{x}}_{k + 1}} = A{{\rm{x}}_k}\). Find the directions of greatest attraction and/or repulsion.

9. \(A = \left( {\begin{aligned}{}{1.7}&{}&{ - .3}\\{ - 1.2}&{}&{.8}\end{aligned}} \right)\)

\(\)

Short Answer

Expert verified

The direction of greatest attraction and or repulsion is eigenvector \({{\rm{v}}_1}\) and \({{\rm{v}}_2}\).

Here, \({{\rm{v}}_1} = \left( {\begin{aligned}{}{ - 1}\\1\end{aligned}} \right)\) and \({{\rm{v}}_2} = \left( {\begin{aligned}{}1\\4\end{aligned}} \right)\).

Step by step solution

01

Find eigenvalue

\(A = \left( {\begin{aligned}{}{1.7}&{}&{ - .3}\\{ - 1.2}&{}&{.8}\end{aligned}} \right)\)

For finding eigenvalue,

\(\begin{aligned}{}det\left( {{\rm{A - }}\lambda {\rm{I }}} \right){\rm{ = }}\left( {\left( {{\rm{1}}{\rm{.7 - }}\lambda } \right)\left( {.8 - \lambda } \right)} \right) - \left( {\left( { - .3} \right)\left( { - 1.2} \right)} \right)\\0 = {\lambda ^2}{\rm{ - 2}}.5\lambda {\rm{ + }}1{\rm{ }}\end{aligned}\)

From this characteristic equation

\(\begin{aligned}{}\lambda &= \frac{{2.5 \pm \sqrt {{{2.5}^2} - 4\left( 1 \right)} }}{2}\\ &= \frac{{2.5 \pm \sqrt {2.25} }}{2}\\ &= \frac{{2.5 \pm 1.5}}{2}\\ &= 2,.5\end{aligned}\)

The origin is a saddle point because one eigenvalue is greater than 1 and the other eigenvalue is less than 1 in magnitude.

02

Find the eigenvector

The direction of the greatest repulsion is through the origin and the eigenvector \({{\rm{v}}_1}\).

\(\begin{aligned}{}\left( {A - 2I} \right)x = 0\\\left( {\begin{aligned}{}{ - .3}&{}&{ - .3}&{}&0\\{ - 1.2}&{}&{ - 1.2}&{}&0\end{aligned}} \right) \sim \left( {\begin{aligned}{}1&{}&1&{}&0\\0&{}&0&{}&0\end{aligned}} \right)\end{aligned}\)

\({x_1} = - {x_2}\)

So, \({x_2}\) is free.

Hence eigenvector \({{\rm{v}}_1} = \left( {\begin{aligned}{}{ - 1}\\1\end{aligned}} \right)\).

The direction of the greatest attraction is through the origin and the eigenvector \({v_2}\).

\(\begin{aligned}{c}\left( {A - 2I} \right)x = 0\\\left( {\begin{aligned}{}{1.2}&{ - .3}&0\\{ - 1.2}&{.3}&0\end{aligned}} \right) \sim \left( {\begin{aligned}{}1&{}&{ - .25}&{}&0\\0&{}&0&{}&0\end{aligned}} \right)\end{aligned}\)

\({x_1} = - .25{x_2}\)ad \({x_2}\)is free.

Hence eigenvector \({{\rm{v}}_2} = \left( {\begin{aligned}{}1\\4\end{aligned}} \right)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For the matrix A, find real closed formulas for the trajectoryx(t+1)=Ax¯(t)where x=[01]. Draw a rough sketch

A=[15-27]

Use mathematical induction to show that if \(\lambda \) is an eigenvalue of an \(n \times n\) matrix \(A\), with a corresponding eigenvector, then, for each positive integer \(m\), \({\lambda ^m}\)is an eigenvalue of \({A^m}\), with \({\rm{x}}\) a corresponding eigenvector.

Question: In Exercises \({\bf{1}}\) and \({\bf{2}}\), let \(A = PD{P^{ - {\bf{1}}}}\) and compute \({A^{\bf{4}}}\).

2. \(P{\bf{ = }}\left( {\begin{array}{*{20}{c}}2&{ - 3}\\{ - 3}&5\end{array}} \right)\), \(D{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\frac{{\bf{1}}}{{\bf{2}}}}\end{array}} \right)\)

Question: For the matrices in Exercises 15-17, list the eigenvalues, repeated according to their multiplicities.

17. \(\left[ {\begin{array}{*{20}{c}}3&0&0&0&0\\- 5&1&0&0&0\\3&8&0&0&0\\0&- 7&2&1&0\\- 4&1&9&- 2&3\end{array}} \right]\)

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

7. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{6}}&{{\bf{ - 1}}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free