Chapter 5: Q5.6-2E (page 267)
Suppose the eigenvalue a\(3 \times 3\) matrix A are\(3\),\(4/5\)and\(3/5\)with corresponding eigenvectors \(\left[ {\begin{array}{*{20}{c}}1\\0\\{ - 3}\end{array}} \right]\)\(\left[ {\begin{array}{*{20}{c}}2\\1\\{ - 5}\end{array}} \right]\) and\(\left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 3}\\7\end{array}} \right]\).Let \[{x_0} = \left[ {\begin{array}{*{20}{c}}{ - 2}\\{ - 5}\\3\end{array}} \right]\] . Find the solution \({x_{k + 1}} = A{x_k}\) .For the specified \[{x_0}\]and describe what happen at\(x \to \infty \)
Short Answer
The general solution is \({{\rm{x}}_k} \approx 2 \cdot {3^k},{{\rm{v}}_1} = 2 \cdot {3^k}\left( {\begin{aligned}{{}}1\\0\\{ - 3}\end{aligned}} \right)\).