Chapter 5: Q5.6-1E (page 267)
Let A be a \(2 \times 2\) matrix with eigenvalues \(3\) and \(1/3\) and corresponding eigenvectors \({{\rm{v}}_1} = \left( {\begin{aligned}{}1\\1\end{aligned}} \right)\) and \({{\rm{v}}_2} = \left( {\begin{aligned}{}{ - 1}\\1\end{aligned}} \right)\).Let \(\left\{ {{{\rm{x}}_k}} \right\}\) be a solution of the difference equation \({{\rm{x}}_{k + 1}} = A{{\rm{x}}_k},{{\rm{x}}_0} = \left( {\begin{aligned}{}9\\1\end{aligned}} \right)\) .
- Compute\({{\rm{x}}_1} = A{{\rm{x}}_0}\). (Hint: You do not need to know A itself.
- Find a formula for\({{\rm{x}}_k}\)involving k and the eigenvectors\({{\rm{v}}_1}\)and\({{\rm{v}}_2}\).
Short Answer
(a)The solution is \({{\rm{x}}_1} = \left( {\begin{aligned}{}{49/3}\\{41/3}\end{aligned}} \right)\).
(a)The formula for \({{\rm{x}}_k}\)is \({{\rm{x}}_k} = 5{\left( 3 \right)^k}{{\rm{v}}_1} - 4{\left( {1/3} \right)^k}{{\rm{v}}_2}\)