If \(A\) is a \(n \times n\) matrix, then \(det\left( {A - \lambda I} \right) = 0\), is called the characteristic equation of matrix \(A\).
It is given that\(A = \left( {\begin{aligned}{}{ - \sqrt 3 /2}&{}&{1/2}\\{ - 1/2}&{}&{\,\, - \sqrt 3 /2}\end{aligned}} \right)\)and\(I = \left( {\begin{aligned}{}1&{}&0\\0&{}&1\end{aligned}} \right)\)is the identity matrix. Find the matrix\(\left( {A - \lambda I} \right)\)as shown below:
\(\begin{aligned}{}A - \lambda I &= \left( {\begin{aligned}{}{ - \sqrt 3 /2}&{}{1/2}\\{ - 1/2}&{}&{\,\, - \sqrt 3 /2}\end{aligned}} \right) - \lambda \left( {\begin{aligned}{}1&{}&0\\0&{}&1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{}{ - \sqrt 3 /2 - \lambda }&{1/2}\\{ - 1/2}&{ - \sqrt 3 /2 - \lambda }\end{aligned}} \right)\end{aligned}\)
Now calculate the determinant of the matrix\(\left( {A - \lambda I} \right)\)as shown below:
\(\begin{aligned}{}det\left( {A - \lambda I} \right) &= det\left( {\begin{aligned}{}{ - \sqrt 3 /2 - \lambda }&{}&{1/2}\\{ - 1/2}&{}&{ - \sqrt 3 /2 - \lambda }\end{aligned}} \right)\\ &= \left( { - \sqrt 3 /2 - \lambda } \right)\left( { - \sqrt 3 /2 - \lambda } \right) + 1/4\\ &= {\lambda ^2} - \sqrt 3 \lambda + 1\end{aligned}\)
So, the characteristic equation of the matrix \(A\) is \({\lambda ^2} - \sqrt 3 \lambda + 1 = 0\).