Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 7–12, use Example 6 to list the eigenvalues of \(A\). In each case, the transformation \({\rm{x}} \mapsto A{\rm{x}}\) is the composition of a rotation and a scaling. Give the angle \(\varphi \) of the rotation, where \( - \pi < \varphi \le \pi \) and give the scale \(r\).

9. \(\left( {\begin{aligned}{}{ - \sqrt 3 /2}&{}&{1/2}\\{ - 1/2}&{}&{\, - \sqrt 3 /2}\end{aligned}} \right)\)

Short Answer

Expert verified

The angle of rotation is \(\varphi = - \frac{{5\pi }}{6}\,{\rm{radians}}\) and the scale factor \(r = 1\).

Step by step solution

01

Find the characteristic equation

If \(A\) is a \(n \times n\) matrix, then \(det\left( {A - \lambda I} \right) = 0\), is called the characteristic equation of matrix \(A\).

It is given that\(A = \left( {\begin{aligned}{}{ - \sqrt 3 /2}&{}&{1/2}\\{ - 1/2}&{}&{\,\, - \sqrt 3 /2}\end{aligned}} \right)\)and\(I = \left( {\begin{aligned}{}1&{}&0\\0&{}&1\end{aligned}} \right)\)is the identity matrix. Find the matrix\(\left( {A - \lambda I} \right)\)as shown below:

\(\begin{aligned}{}A - \lambda I &= \left( {\begin{aligned}{}{ - \sqrt 3 /2}&{}{1/2}\\{ - 1/2}&{}&{\,\, - \sqrt 3 /2}\end{aligned}} \right) - \lambda \left( {\begin{aligned}{}1&{}&0\\0&{}&1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{}{ - \sqrt 3 /2 - \lambda }&{1/2}\\{ - 1/2}&{ - \sqrt 3 /2 - \lambda }\end{aligned}} \right)\end{aligned}\)

Now calculate the determinant of the matrix\(\left( {A - \lambda I} \right)\)as shown below:

\(\begin{aligned}{}det\left( {A - \lambda I} \right) &= det\left( {\begin{aligned}{}{ - \sqrt 3 /2 - \lambda }&{}&{1/2}\\{ - 1/2}&{}&{ - \sqrt 3 /2 - \lambda }\end{aligned}} \right)\\ &= \left( { - \sqrt 3 /2 - \lambda } \right)\left( { - \sqrt 3 /2 - \lambda } \right) + 1/4\\ &= {\lambda ^2} - \sqrt 3 \lambda + 1\end{aligned}\)

So, the characteristic equation of the matrix \(A\) is \({\lambda ^2} - \sqrt 3 \lambda + 1 = 0\).

02

Find the Eigenvalues

Thus, the eigenvalues of\(A\)are the solutions of the characteristic equation\(\det \left( {A - \lambda I} \right) = 0\). So, solve the characteristic equation\({\lambda ^2} - \sqrt 3 \lambda + 1 = 0\), as follows:

For the quadratic equation, \(a{x^2} + bx + c = 0\) , the general solution is given as\(x = \frac{{ - b \pm \sqrt {{b^2} - 4ac} \;\;}}{{2a}}\) .

Thus, the solution of the characteristic equation \({\lambda ^2} - \sqrt 3 \lambda + 1 = 0\) is obtained as follows:

\(\begin{aligned}{}{\lambda ^2} - \sqrt 3 \lambda + 1 &= 0\\\lambda &= \frac{{ - \left( {\sqrt 3 } \right) \pm \sqrt {{{\left( {\sqrt 3 } \right)}^2} - 4\left( 1 \right)} }}{2}\\ &= \frac{{ - \sqrt 3 \pm \sqrt { - 1} }}{2}\\ &= \sqrt 3 /2 \pm i\left( {1/2} \right)\end{aligned}\)

The eigenvalues of \(A\) are \(\lambda = \sqrt 3 /2 \pm i\left( {1/2} \right)\) .

03

Find the angle of rotation and scale factor

For the Eigenvalue, \({\lambda _i} = a \pm bi\), the scale factor is \(r = \left| \lambda \right|\) and the angle of rotation is \(\varphi = {\tan ^{ - 1}}\left( {\frac{b}{a}} \right)\).

For the Eigenvalue \(\lambda = \sqrt 3 /2 \pm i\left( {1/2} \right)\), \(\left( {a,b} \right) = \left( {\sqrt 3 /2,\,1/2} \right)\). Find the scale factor \(r\) as follows:

\(\begin{aligned}{}r &= \left| \lambda \right|\\ &= \left| {\sqrt 3 /2 \pm i\left( {1/2} \right)} \right|\\ &= \sqrt {{{\left( {\sqrt 3 /2} \right)}^2} + {{\left( {1/2} \right)}^2}} \\ &= 1\end{aligned}\)

Find the angle of rotation \(\varphi \)as follows:

\(\begin{aligned}{}\phi &= {\tan ^{ - 1}}\left( {\frac{{ - 1/2}}{{\sqrt 3 /2}}} \right)\\ &= - \frac{{5\pi }}{6}\,{\rm{radians}}\end{aligned}\)

Thus, the angle of rotation is\(\varphi = - \frac{{5\pi }}{6}\,{\rm{radians}}\)and the scale factor\(r = 1\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If \(p\left( t \right) = {c_0} + {c_1}t + {c_2}{t^2} + ...... + {c_n}{t^n}\), define \(p\left( A \right)\) to be the matrix formed by replacing each power of \(t\) in \(p\left( t \right)\)by the corresponding power of \(A\) (with \({A^0} = I\) ). That is,

\(p\left( t \right) = {c_0} + {c_1}I + {c_2}{I^2} + ...... + {c_n}{I^n}\)

Show that if \(\lambda \) is an eigenvalue of A, then one eigenvalue of \(p\left( A \right)\) is\(p\left( \lambda \right)\).

Let \(A{\bf{ = }}\left( {\begin{aligned}{*{20}{c}}{{a_{{\bf{11}}}}}&{{a_{{\bf{12}}}}}\\{{a_{{\bf{21}}}}}&{{a_{{\bf{22}}}}}\end{aligned}} \right)\). Recall from Exercise \({\bf{25}}\) in Section \({\bf{5}}{\bf{.4}}\) that \({\rm{tr}}\;A\) (the trace of \(A\)) is the sum of the diagonal entries in \(A\). Show that the characteristic polynomial of \(A\) is \({\lambda ^2} - \left( {{\rm{tr}}A} \right)\lambda + \det A\). Then show that the eigenvalues of a \({\bf{2 \times 2}}\) matrix \(A\) are both real if and only if \(\det A \le {\left( {\frac{{{\rm{tr}}A}}{2}} \right)^2}\).

Consider the growth of a lilac bush. The state of this lilac bush for several years (at year’s end) is shown in the accompanying sketch. Let n(t) be the number of new branches (grown in the year t) and a(t) the number of old branches. In the sketch, the new branches are represented by shorter lines. Each old branch will grow two new branches in the following year. We assume that no branches ever die.

(a) Find the matrix A such that [nt+1at+1]=A[ntat]

(b) Verify that [11]and [2-1] are eigenvectors of A. Find the associated eigenvalues.

(c) Find closed formulas for n(t) and a(t).

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

2. \({\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} ,{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} ,\,\,{\mathop{\rm and}\nolimits} \,\,\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}\)

Question 18: It can be shown that the algebraic multiplicity of an eigenvalue \(\lambda \) is always greater than or equal to the dimension of the eigenspace corresponding to \(\lambda \). Find \(h\) in the matrix \(A\) below such that the eigenspace for \(\lambda = 5\) is two-dimensional:

\[A = \left[ {\begin{array}{*{20}{c}}5&{ - 2}&6&{ - 1}\\0&3&h&0\\0&0&5&4\\0&0&0&1\end{array}} \right]\]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free