If \(A\) is a \(n \times n\) matrix, then \(det\left( {A - \lambda I} \right) = 0\), is called the characteristic equation of matrix \(A\).
It is given that\(A = \left( {\begin{aligned}{}{\sqrt 3 }&{}&{ - 1}\\1&{}&{\,\,\sqrt 3 }\end{aligned}} \right)\)and\(I = \left( {\begin{aligned}{}1&{}&0\\0&{}&1\end{aligned}} \right)\)is the identity matrix. Find the matrix\(\left( {A - \lambda I} \right)\)as shown below:
\(\begin{aligned}{}A - \lambda I &= \left( {\begin{aligned}{}{\sqrt 3 }&{}&{ - 1}\\1&{}&{\,\,\sqrt 3 }\end{aligned}} \right) - \lambda \left( {\begin{aligned}{}1&{}&0\\0&{}&1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{}{\sqrt 3 - \lambda }&{}&{ - 1}\\1&{}&{\sqrt 3 - \lambda }\end{aligned}} \right)\end{aligned}\)
Now calculate the determinant of the matrix\(\left( {A - \lambda I} \right)\)as shown below:
\(\begin{aligned}{}det\left( {A - \lambda I} \right) &= det\left( {\begin{aligned}{}{\sqrt 3 - \lambda }&{}&{ - 1}\\1&{}&{\sqrt 3 - \lambda }\end{aligned}} \right)\\ &= \left( {\sqrt 3 - \lambda } \right)\left( {\sqrt 3 - \lambda } \right) + 1\\ &= {\lambda ^2} - 2\sqrt 3 \lambda + 4\end{aligned}\)
So, the characteristic equation of the matrix \(A\) is \({\lambda ^2} - 2\sqrt 3 \lambda + 4 = 0\).