For the Eigenvalue, \({\lambda _i}\), matrix A satisfies the system of equations \(\left( {A - {\lambda _i}} \right){\rm{x}} = {\rm{0}}\).
For the Eigenvector, \(\lambda = 3 + i\), the system \(\left( {A - \lambda I} \right)\)is solved as follows:
\(\begin{aligned}{}A - \left( {2 + i} \right)I = \left( {\begin{aligned}{}5&{}&{ - 5}\\1&{}&{\,\,1}\end{aligned}} \right) - \left( {3 + i} \right)\left( {\begin{aligned}{}1&{}&0\\{\,0}&{}&1\end{aligned}} \right)\\ = \left( {\begin{aligned}{}{2 - i}&{}&{ - 5}\\1&{}&{ - 2 - i}\end{aligned}} \right)\end{aligned}\)
The system of equations \(\left( {A - \lambda I} \right)x = 0\)gives the following equations:
\(\begin{aligned}{}\left( {\begin{aligned}{}{2 - i}&{ - 5}\\1&{ - 2 - i}\end{aligned}} \right) &= 0\\\left( {2 - i} \right){x_1} - 5{x_2} &= 0\\{x_1} + \left( { - 2 - i} \right){x_2} &= 0\end{aligned}\)
Both the equations are equivalent to the equation, \({x_1} = - \left( { - 2 - i} \right){x_2}\), in which \({x_2}\) the variable is free. So, the general solution is \({x_2}\left( \begin{aligned}{}2 + i\\\,\,\,\,\,\,1\end{aligned} \right)\) and the corresponding Eigenvector is \({{\bf{v}}_1} = \left( \begin{aligned}{}2 + i\\\,\,\,\,\,\,1\end{aligned} \right)\).
For the Eigenvalue,\(\lambda = 3 - i\), the system \(\left( {A - \lambda I} \right)\) is solved as follows:
\(\begin{aligned}{}A - \left( {3 - i} \right)I &= \left( {\begin{aligned}{}1&{}&{ - 2}\\1&{}&{\,\,3}\end{aligned}} \right) - \left( {3 - i} \right)\left( {\begin{aligned}{}1&{}&0\\{\,0}&{}&1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{}{2 + i}&{ - 5}\\1&{ - 2 + i}\end{aligned}} \right)\end{aligned}\)
The system of equations \(\left( {A - \lambda I} \right)x = 0\)gives the following equations:
\(\begin{aligned}{c}\left( {\begin{aligned}{}{2 + i}&{ - 5}\\1&{ - 2 + i}\end{aligned}} \right) = 0\\\left( {2 + i} \right){x_1} - 5{x_2} = 0\\{x_1} + \left( { - 2 + i} \right){x_2} = 0\end{aligned}\)
Both the equations are equivalent to the equation, \({x_1} = - \left( { - 2 + i} \right){x_2}\), in which \({x_2}\) the variable is free. So, the general solution is \({x_2}\left( \begin{aligned}{}\,\,2 - i\\\,\,\,\,\,\,1\end{aligned} \right)\) and the corresponding Eigenvector is \({{\bf{v}}_2} = \left( \begin{aligned}{}\,\,2 - i\\\,\,\,\,\,\,1\end{aligned} \right)\).