Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 27 and 28, find a factorization of the given matrix A in the form \(A = PC{P^{ - 1}}\),where \(C\) is a block-diagonal matrix with \(2 \times 2\) blocks of the form shown in Example 6. (For each conjugate pair of eigenvalues, use the real and imaginary parts of one eigenvector in \({\mathbb{}^4}\) to create two columns of P.)

28. \(\left( {\begin{aligned}{}{ - 1.4}&{}&{ - 2.0}&{}&{ - 2.0}&{}&{ - 2.0}\\{ - 1.3}&{}&{ - .8}&{}&{ - .1}&{}&{ - .6}\\{.3}&{}&{ - 1.9}&{}&{ - 1.6}&{}&{ - 1.4}\\{2.0}&{}&{3.3}&{}&{2.3}&{}&{2.6}\end{aligned}} \right)\)

Short Answer

Expert verified

The factorization is \(P = \left( {\begin{aligned}{}{ - 1}&{}&{ - 1}&{}&0&{}&0\\{ - 1}&{}&1&{}&{ - 1}&{}&{ - 1}\\1&{}&{ - 1}&{}&{ - 1}&{}&1\\1&{}&0&{}&2&{}&0\end{aligned}} \right)\), \(C = \left( {\begin{aligned}{}{ - .4}&{}&{ - 1}&{}&0&{}&0\\1&{}&{ - .4}&{}&0&{}&0\\0&{}&0&{}&{ - .2}&{}&{ - .5}\\0&{}&0&{}&{.5}&{}&{ - .2}\end{aligned}} \right)\).

Step by step solution

01

Input the matrix

\({\rm{ > > A = }}\left( {{\rm{0}}{\rm{.7 1}}{\rm{.1 2 1}}{\rm{.7; - 2 - 4 - 8}}{\rm{.6 - 7}}{\rm{.4; 0 - 0}}{\rm{.5 - 1 - 1; 1 2}}{\rm{.8 6 5}}{\rm{.3}}} \right)\)

02

Get the expression of command for getting the Eigenvalue(s) of A

We use the following command to get the eigenvalue of the matrix \(A\).

\({\rm{ev}} = {\mathop{\rm eig}\nolimits} ({\bf{A}}) = ( - .4 + {\rm{i}}, - .4 - {\rm{i}}, - .2 + .5{\rm{i}}, - .2 - .5{\rm{i}})\)

For \(\lambda = - .4 - i\), we find the value of the operand in this case to find the eigenvalues.

\({\mathop{\rm nulbasis}\nolimits} ({\bf{A}} - {\mathop{\rm ev}\nolimits} ({\bf{2}})*{\mathop{\rm eye}\nolimits} (4)) = \left( {\begin{aligned}{}{ - 1 - i}\\{ - 1 + i}\\{1 - i}\\1\end{aligned}} \right)\)

\({{\bf{v}}_1} = \left( {\begin{aligned}{}{ - 1 - i}\\{ - 1 + i}\\{1 - i}\\1\end{aligned}} \right)\)

For \(\lambda = - .2 - .5i\), we find the value of the operand in this case to find the eigenvalues.

\({\mathop{\rm nulbasis}\nolimits} ({\bf{A}} - {\mathop{\rm ev}\nolimits} (4)*{\mathop{\rm eye}\nolimits} (4)) = \left( {\begin{aligned}{}0\\{ - 1 - i}\\{ - 1 + i}\\2\end{aligned}} \right)\)

\({{\bf{v}}_2} = \left( {\begin{aligned}{}0\\{ - 1 - i}\\{ - 1 + i}\\2\end{aligned}} \right)\)

Now, by theorem 9:

\(P = \left( {\begin{aligned}{}{{\mathop{\rm Re}\nolimits} {v_1}}&{{\mathop{\rm Im}\nolimits} {v_1}}&{{\mathop{\rm Re}\nolimits} {v_2}}&{{\mathop{\rm Im}\nolimits} {v_2}}\end{aligned}} \right) = \left( {\begin{aligned}{}{ - 1}&{}&{ - 1}&{}&0&{}&0\\{ - 1}&{}&1&{}&{ - 1}&{}&{ - 1}\\1&{}&{ - 1}&{}&{ - 1}&{}&1\\1&{}&0&{}&2&{}&0\end{aligned}} \right)\)and \(C = \left( {\begin{aligned}{}{ - .4}&{}&{ - 1}&{}&0&{}&0\\1&{}&{ - .4}&{}&0&{}&0\\0&{}&0&{}&{ - .2}&{}&{ - .5}\\0&{}&0&{}&{.5}&{}&{ - .2}\end{aligned}} \right)\).

Hence, \(P = \left( {\begin{aligned}{}{ - 1}&{}&{ - 1}&{}&0&{}&0\\{ - 1}&{}&1&{}&{ - 1}&{}&{ - 1}\\1&{}&{ - 1}&{}&{ - 1}&{}&1\\1&{}&0&{}&2&{}&0\end{aligned}} \right),C = \left( {\begin{aligned}{}{ - .4}&{}&{ - 1}&{}&0&{}&0\\1&{}&{ - .4}&{}&0&{}&0\\0&{}&0&{}&{ - .2}&{}&{ - .5}\\0&{}&0&{}&{.5}&{}&{ - .2}\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises \({\bf{1}}\) and \({\bf{2}}\), let \(A = PD{P^{ - {\bf{1}}}}\) and compute \({A^{\bf{4}}}\).

2. \(P{\bf{ = }}\left( {\begin{array}{*{20}{c}}2&{ - 3}\\{ - 3}&5\end{array}} \right)\), \(D{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\frac{{\bf{1}}}{{\bf{2}}}}\end{array}} \right)\)

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

11. \(\left( {\begin{array}{*{20}{c}}{ - 1}&4&{ - 2}\\{ - 3}&4&0\\{ - 3}&1&3\end{array}} \right)\)

Question: Exercises 9-14 require techniques section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for \(3 \times 3\) determinants described prior to Exercise 15-18 in Section 3.1. [Note: Finding the characteristic polynomial of a \(3 \times 3\) matrix is not easy to do with just row operations, because the variable \(\lambda \) is involved.

14. \(\left[ {\begin{array}{*{20}{c}}5&- 2&3\\0&1&0\\6&7&- 2\end{array}} \right]\)

Let \(J\) be the \(n \times n\) matrix of all \({\bf{1}}\)’s and consider \(A = \left( {a - b} \right)I + bJ\) that is,

\(A = \left( {\begin{aligned}{*{20}{c}}a&b&b&{...}&b\\b&a&b&{...}&b\\b&b&a&{...}&b\\:&:&:&:&:\\b&b&b&{...}&a\end{aligned}} \right)\)

Use the results of Exercise \({\bf{16}}\) in the Supplementary Exercises for Chapter \({\bf{3}}\) to show that the eigenvalues of \(A\) are \(a - b\) and \(a + \left( {n - {\bf{1}}} \right)b\). What are the multiplicities of these eigenvalues?

For the Matrices A find real closed formulas for the trajectory x(t+1)=Ax(t)wherex(0)=[01]A=[2-332]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free