Chapter 5: Q5.5-26E (page 267)
Let \(A\) be a real \(2 \times 2\) matrix with a complex eigenvalue \(\lambda = a - bi\)\(\left( {b \ne 0} \right)\) and an associated eigenvector \({\bf{v}}\) in \({\mathbb{}^2}\).
- Show that \(A({\mathop{\rm Re}\nolimits} {\bf{v}}) = a{\mathop{\rm Re}\nolimits} {\bf{v}} + b{\mathop{\rm Im}\nolimits} {\bf{v}}\) and \(A({\mathop{\rm Im}\nolimits} {\bf{v}}) = - b{\mathop{\rm Re}\nolimits} {\bf{v}} + a{\mathop{\rm Im}\nolimits} {\bf{v}}\). (Hint: Write \({\bf{v}} = {\mathop{\rm Re}\nolimits} {\bf{v}} + i{\mathop{\rm Im}\nolimits} {\bf{v}}\), and compute \(A{\bf{v}}\).)
- Verify that if \(P\) and \(C\) are given as in Theorem 9, then \(AP = PC\)
Short Answer
- \(A\left( {{\mathop{\rm Re}\nolimits} \left( {\bf{v}} \right)} \right) = {\mathop{\rm Re}\nolimits} \left( {A{\bf{v}}} \right) = a{\mathop{\rm Re}\nolimits} \left( {\bf{v}} \right) + b{\mathop{\rm Im}\nolimits} \left( {\bf{v}} \right)\)\(A\left( {{\mathop{\rm Im}\nolimits} \left( {\bf{v}} \right)} \right) = {\mathop{\rm Im}\nolimits} \left( {A{\bf{v}}} \right) = - b{\mathop{\rm Re}\nolimits} \left( {\bf{v}} \right) + aIm\left( {\bf{v}} \right)\)
- \(AP = \left( {A\left( {{\mathop{\rm Re}\nolimits} \left( {\bf{v}} \right)} \right)\,\,\,\,\,A\left( {{\mathop{\rm Im}\nolimits} \left( {\bf{v}} \right)} \right)} \right) = \left( {P\left( {\begin{aligned}{}a\\b\end{aligned}} \right)\;\;\;P\left( {\begin{aligned}{}{ - b}\\a\end{aligned}} \right)} \right) = P\left( {\begin{aligned}{}a&{}&{ - b}\\b&{}&a\end{aligned}} \right) = PC\)