Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(A\) be a complex (or real) \(n \times n\) matrix, and let \({\bf{x}}\) in \({\mathbb{C}^n}\) be an

eigenvector corresponding to an eigenvalue \(\lambda \) in \(\mathbb{C}\). Show that for each nonzero complex scalar \(\mu \), the vector \(\mu {\bf{x}}\) is an eigenvector of \(A\).

Short Answer

Expert verified

It is proved that the vector \(\mu {\bf{x}}\) is an eigenvector of \(A\).

Step by step solution

01

Matrix rules

Twomatricescan be multiplied only when the number of columns in the first equals the number of rows in the second

02

Calculating the vector

By the definition of eigenvalues and eigenvectors we have \(A{\bf{x}} = \lambda {\bf{x}}\), where \({\bf{x}} \ne {\bf{0}}\) Let \(\mu \ne 0\) be a complex scalar. Then \(\mu {\bf{x}} \ne {\bf{0}}\) and we have;

\(\begin{aligned}{c}A(\mu {\bf{x}}) = \mu (A{\bf{x}})\\ = \mu (\lambda {\bf{x}})\\ = \lambda (\mu {\bf{x}})\end{aligned}\)

The above calculation proves that the vector \(\mu {\bf{x}}\) is an eigenvector of \(A\) corresponding to the eigenvalue \(\lambda \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For the matrix A, find real closed formulas for the trajectoryx(t+1)=Ax¯(t)where x=[01]. Draw a rough sketch

A=[15-27]

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

21. Use mathematical induction to prove that for \(n \ge {\bf{2}}\),\(\begin{aligned}{c}det\left( {{C_p} - \lambda I} \right) = {\left( { - {\bf{1}}} \right)^n}\left( {{a_{\bf{0}}} + {a_{\bf{1}}}\lambda + ... + {a_{n - {\bf{1}}}}{\lambda ^{n - {\bf{1}}}} + {\lambda ^n}} \right)\\ = {\left( { - {\bf{1}}} \right)^n}p\left( \lambda \right)\end{aligned}\)

(Hint: Expanding by cofactors down the first column, show that \(det\left( {{C_p} - \lambda I} \right)\) has the form \(\left( { - \lambda B} \right) + {\left( { - {\bf{1}}} \right)^n}{a_{\bf{0}}}\) where \(B\) is a certain polynomial (by the induction assumption).)

Question: Let \(A = \left( {\begin{array}{*{20}{c}}{.5}&{.2}&{.3}\\{.3}&{.8}&{.3}\\{.2}&0&{.4}\end{array}} \right)\), \({{\rm{v}}_1} = \left( {\begin{array}{*{20}{c}}{.3}\\{.6}\\{.1}\end{array}} \right)\), \({{\rm{v}}_2} = \left( {\begin{array}{*{20}{c}}1\\{ - 3}\\2\end{array}} \right)\), \({{\rm{v}}_3} = \left( {\begin{array}{*{20}{c}}{ - 1}\\0\\1\end{array}} \right)\) and \({\rm{w}} = \left( {\begin{array}{*{20}{c}}1\\1\\1\end{array}} \right)\).

  1. Show that \({{\rm{v}}_1}\), \({{\rm{v}}_2}\), and \({{\rm{v}}_3}\) are eigenvectors of \(A\). (Note: \(A\) is the stochastic matrix studied in Example 3 of Section 4.9.)
  2. Let \({{\rm{x}}_0}\) be any vector in \({\mathbb{R}^3}\) with non-negative entries whose sum is 1. (In section 4.9, \({{\rm{x}}_0}\) was called a probability vector.) Explain why there are constants \({c_1}\), \({c_2}\), and \({c_3}\) such that \({{\rm{x}}_0} = {c_1}{{\rm{v}}_1} + {c_2}{{\rm{v}}_2} + {c_3}{{\rm{v}}_3}\). Compute \({{\rm{w}}^T}{{\rm{x}}_0}\), and deduce that \({c_1} = 1\).
  3. For \(k = 1,2, \ldots ,\) define \({{\rm{x}}_k} = {A^k}{{\rm{x}}_0}\), with \({{\rm{x}}_0}\) as in part (b). Show that \({{\rm{x}}_k} \to {{\rm{v}}_1}\) as \(k\) increases.

Question: In Exercises 21 and 22, \(A\) and \(B\) are \(n \times n\) matrices. Mark each statement True or False. Justify each answer.

  1. The determinant of \(A\) is the product of the diagonal entries in \(A\).
  2. An elementary row operation on \(A\) does not change the determinant.
  3. \(\left( {\det A} \right)\left( {\det B} \right) = \det AB\)
  4. If \(\lambda + 5\) is a factor of the characteristic polynomial of \(A\), then 5 is an eigenvalue of \(A\).

Let\(G = \left( {\begin{aligned}{*{20}{c}}A&X\\{\bf{0}}&B\end{aligned}} \right)\). Use formula\(\left( {\bf{1}} \right)\)for the determinant in section\({\bf{5}}{\bf{.2}}\)to explain why\(\det G = \left( {\det A} \right)\left( {\det B} \right)\). From this, deduce that the characteristic polynomial of\(G\)is the product of the characteristic polynomials of\(A\)and\(B\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free