Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 13-20, find an invertible matrix \(P\) and a matrix \(C\) of the form \(\left( {\begin{aligned}{}a&{}&{ - b}\\b&{}&a\end{aligned}} \right)\) such that the given matrix has the form\(A = PC{P^{ - 1}}\). For Exercises 13-16, use information from Exercises 1-4.

20. \(\left( {\begin{aligned}{}{ - 1.64}&{}&{ - 2.4}\\{1.92}&{}&{2.2}\end{aligned}} \right)\)

Short Answer

Expert verified

The invertible matrix and matrix are \(C = \left( {\begin{aligned}{}{.28}&{}&{ - .96}\\{.96}&{}&{.28}\end{aligned}} \right),\;{\rm{and}}\,P = \left( {\begin{aligned}{}{ - 2}&{}&{ - 1}\\2&{}&0\end{aligned}} \right)\)

Step by step solution

01

Finding the matrix \(P\) and the matrix  \(C\)

Let \(A\) be a \(2 \times 2\) with eigenvalues of the form \(a \pm bi\) , and let \(v\) be the eigenvector corresponding to the eigenvalue \(a - bi\), then the matrix \(P\) will be \(P = \left( {\begin{aligned}{}{{\mathop{\rm Re}\nolimits} v}&{{\mathop{\rm Im}\nolimits} v}\end{aligned}} \right)\).

The matrix \(C\) can be obtained by \(C = {P^{ - 1}}AP\).

02

Find the Invertible matrix

Given that \(A = \left( {\begin{aligned}{}{ - 1.64}&{}&{ - 2.4}\\{1.92}&{}&{2.2}\end{aligned}} \right)\).

The characteristic polynomial is \({\lambda ^2} - .56\lambda + 1\). Hence the eigenvalues of \(A\) are \(\lambda = - .28 \pm .96i\).

To find an eigenvector corresponding to \( - .28 - .96i\) we compute,

\(A - \left( { - .28 - .96i} \right)I = \left( {\begin{aligned}{}{1.92 + .96i}&{}&{ - 2.4}\\{1.92}&{}&{ - 1.92 + .96i}\end{aligned}} \right)\)

The equation \(\left( {A - \left( { - .28 - .96i} \right)I} \right)x = 0\) has a system of equations,

\(\begin{aligned}{}\left( {1.92 + .96i} \right){x_1} - 2.4{x_2} &= 0\\1.92{x_1} + ( - 1.92 + .96i){x_2} &= 0\end{aligned}\)

Hence \({x_1} = \frac{{ - 2 - i}}{2}{x_2}\) , \({x_2}\)is a free variable.

03

Find the matrix further

Thus, the eigen vector corresponds to the eigenvalue\( - .28 - .96i\).

\(v = \left( {\begin{aligned}{}{ - 2 - i}\\2\end{aligned}} \right)\)

By Theorem 9,

\(P = \left( {\begin{aligned}{}{{\mathop{\rm Re}\nolimits} v}&{{\mathop{\rm Im}\nolimits} v}\end{aligned}} \right) \Rightarrow P = \left( {\begin{aligned}{}{ - 2}&{}&{ - 1}\\2&{}&0\end{aligned}} \right)\)

And

\(\begin{aligned}{}C &= {P^{ - 1}}AP\\ &= \frac{1}{2}\left( {\begin{aligned}{}0&{}&1\\{ - 2}&{}&{ - 2}\end{aligned}} \right)\left( {\begin{aligned}{}{ - 1.64}&{}&{ - 2.4}\\{1.92}&{}&{2.2}\end{aligned}} \right)\left( {\begin{aligned}{}{ - 2}&{}&{ - 1}\\2&{}&0\end{aligned}} \right)\\ &= \left( {\begin{aligned}{}{.28}&{}&{ - .96}\\{.96}&{}&{.28}\end{aligned}} \right)\end{aligned}\)

Thus, the invertible matrix and matrix are \(C = \left( {\begin{aligned}{}{.28}&{}&{ - .96}\\{.96}&{}&{.28}\end{aligned}} \right),\;{\rm{and}}\;P = \left( {\begin{aligned}{}{ - 2}&{}&{ - 1}\\2&{}&0\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(M)The MATLAB command roots\(\left( p \right)\) computes the roots of the polynomial equation \(p\left( t \right) = {\bf{0}}\). Read a MATLAB manual, and then describe the basic idea behind the algorithm for the roots command.

Question: In Exercises \({\bf{5}}\) and \({\bf{6}}\), the matrix \(A\) is factored in the form \(PD{P^{ - {\bf{1}}}}\). Use the Diagonalization Theorem to find the eigenvalues of \(A\) and a basis for each eigenspace.

6. \(\left( {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{0}}&{{\bf{ - 2}}}\\{\bf{2}}&{\bf{5}}&{\bf{4}}\\{\bf{0}}&{\bf{0}}&{\bf{5}}\end{array}} \right){\bf{ = }}\left( {\begin{array}{*{20}{c}}{{\bf{ - 2}}}&{\bf{0}}&{{\bf{ - 1}}}\\{\bf{0}}&{\bf{1}}&{\bf{2}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{5}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&4\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\bf{0}}&{\bf{0}}&{\bf{1}}\\{\bf{2}}&{\bf{1}}&{\bf{4}}\\{{\bf{ - 1}}}&{\bf{0}}&{{\bf{ - 2}}}\end{array}} \right)\)

Question 18: It can be shown that the algebraic multiplicity of an eigenvalue \(\lambda \) is always greater than or equal to the dimension of the eigenspace corresponding to \(\lambda \). Find \(h\) in the matrix \(A\) below such that the eigenspace for \(\lambda = 5\) is two-dimensional:

\[A = \left[ {\begin{array}{*{20}{c}}5&{ - 2}&6&{ - 1}\\0&3&h&0\\0&0&5&4\\0&0&0&1\end{array}} \right]\]

For the matrix A, find real closed formulas for the trajectoryxโ†’(t+1)=Axยฏ(t)where xโ†’=[01]. Draw a rough sketch

A=[15-27]

Question: In Exercises \({\bf{1}}\) and \({\bf{2}}\), let \(A = PD{P^{ - {\bf{1}}}}\) and compute \({A^{\bf{4}}}\).

1. \(P{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{7}}\\{\bf{2}}&{\bf{3}}\end{array}} \right)\), \(D{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{2}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free