Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 13-20, find an invertible matrix \(P\) and a matrix \(C\) of the form \(\left( {\begin{aligned}{}a&{}&{ - b}\\b&{}&a\end{aligned}} \right)\) such that the given matrix has the form\(A = PC{P^{ - 1}}\). For Exercises 13-16, use information from Exercises 1-4.

19. \(\left( {\begin{aligned}{}{1.52}&{}&{ - .7}\\{.56}&{}&{.4}\end{aligned}} \right)\)

Short Answer

Expert verified

The invertible matrix and matrix are \(C = \left( {\begin{aligned}{}{.96}&{}&{ - .28}\\{.28}&{}&{.96}\end{aligned}} \right)\;{\rm{and}}\;P = \left( {\begin{aligned}{}2&{}&{ - 1}\\2&{}&0\end{aligned}} \right)\).

Step by step solution

01

Finding the matrix \(P\) and \(C\)

Let \(A\) be a \(2 \times 2\) with eigenvalues of the form \(a \pm bi\) , and let \(v\) be the eigenvector corresponding to the eigenvalue \(a - bi\), then the matrix \(P\) will be \(P = \left( {\begin{aligned}{}{{\mathop{\rm Re}\nolimits} v}&{}&{{\mathop{\rm Im}\nolimits} v}\end{aligned}} \right)\).

The matrix \(C\) can be obtained by \(C = {P^{ - 1}}AP\).

02

Find the Invertible matrix 

Given that \(A = \left( {\begin{aligned}{}{1.52}&{}&{ - .7}\\{.56}&{}&{.4}\end{aligned}} \right)\).

Find the Characteristic equation by using \(\det \left( {A - \lambda I} \right) = 0\).

\(\begin{aligned}{}\det \left( {A - \lambda I} \right) &= 0\\\left( {1.52 - \lambda } \right) \cdot \left( {.4 - \lambda } \right) - \left( { - .7} \right) \cdot \left( {.56} \right) &= 0\\{\lambda ^2} - 1.92\lambda + 1 &= 0\\\left( {\lambda - \left( {.96 - .28i} \right)} \right)\left( {\lambda - \left( {.96 + .28i} \right)} \right) &= 0\end{aligned}\)

Hence the eigenvalues are \(\lambda = .96 \pm .28i\).

Now we have to find an eigenvector corresponding to \(96 - 28i\).

\(\begin{aligned}{}A - \left( {.96 - .28i} \right)I &= 0\\\left( {\begin{aligned}{}{.56 + .28i}&{}&{ - .7}\\{.56}&{}&{ - .56 + .28i}\end{aligned}} \right) &= \left( {\begin{aligned}{}0\\0\end{aligned}} \right)\end{aligned}\)

We can use only one row to obtain an eigenvector.

03

Find the matrix further 

From the second row:

\(\begin{aligned}{}.56{x_1} + ( - .56 + .28i){x_2} &= 0\\{x_1} &= \frac{{2 - i}}{2}{x_2}\end{aligned}\)

Hence the eigenvector is\(v = \left( {\begin{aligned}{}{2 - i}\\2\end{aligned}} \right)\).

By Theorem 9,

\(P = \left( {\begin{aligned}{}{{\mathop{\rm Re}\nolimits} v}&{}&{{\mathop{\rm Im}\nolimits} v}\end{aligned}} \right) \Rightarrow P = \left( {\begin{aligned}{}2&{}&{ - 1}\\2&{}&0\end{aligned}} \right)\)

Find the matrix by using\(C = {P^{ - 1}}AP\).

\(\begin{aligned}{}C &= {P^{ - 1}}AP\\ &= \frac{1}{2}\left( {\begin{aligned}{}0&{}&1\\{ - 2}&2\end{aligned}} \right) \cdot \left( {\begin{aligned}{}{1.52}&{}&{ - .7}\\{.56}&{}&{.4}\end{aligned}} \right) \cdot \left( {\begin{aligned}{}2&{}&{ - 1}\\2&{}&0\end{aligned}} \right)\\ &= \left( {\begin{aligned}{}{.96}&{}&{ - .28}\\{.28}&{}&{.96}\end{aligned}} \right)\end{aligned}\)

Thus, the invertible matrix and matrix are \(C = \left( {\begin{aligned}{}{.96}&{}&{ - .28}\\{.28}&{}&{.96}\end{aligned}} \right),\;{\rm{and}}\;P = \left( {\begin{aligned}{}2&{}&{ - 1}\\2&{}&0\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{array}{*{20}{c}}4\\6\end{array}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{array}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{array}{*{20}{c}}6\\{ - 2}\\3\end{array}} \right)\)

3. \(\frac{1}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{\mathop{\rm w}\nolimits} \)

Let\(\varepsilon = \left\{ {{{\bf{e}}_1},{{\bf{e}}_2},{{\bf{e}}_3}} \right\}\) be the standard basis for \({\mathbb{R}^3}\),\(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2},{{\bf{b}}_3}} \right\}\) be a basis for a vector space \(V\) and\(T:{\mathbb{R}^3} \to V\) be a linear transformation with the property that

\(T\left( {{x_1},{x_2},{x_3}} \right) = \left( {{x_3} - {x_2}} \right){{\bf{b}}_1} - \left( {{x_1} - {x_3}} \right){{\bf{b}}_2} + \left( {{x_1} - {x_2}} \right){{\bf{b}}_3}\)

  1. Compute\(T\left( {{{\bf{e}}_1}} \right)\), \(T\left( {{{\bf{e}}_2}} \right)\) and \(T\left( {{{\bf{e}}_3}} \right)\).
  2. Compute \({\left( {T\left( {{{\bf{e}}_1}} \right)} \right)_B}\), \({\left( {T\left( {{{\bf{e}}_2}} \right)} \right)_B}\) and \({\left( {T\left( {{{\bf{e}}_3}} \right)} \right)_B}\).
  3. Find the matrix for \(T\) relative to \(\varepsilon \), and\(B\).

Let \({\bf{u}}\) be an eigenvector of \(A\) corresponding to an eigenvalue \(\lambda \), and let \(H\) be the line in \({\mathbb{R}^{\bf{n}}}\) through \({\bf{u}}\) and the origin.

  1. Explain why \(H\) is invariant under \(A\) in the sense that \(A{\bf{x}}\) is in \(H\) whenever \({\bf{x}}\) is in \(H\).
  2. Let \(K\) be a one-dimensional subspace of \({\mathbb{R}^{\bf{n}}}\) that is invariant under \(A\). Explain why \(K\) contains an eigenvector of \(A\).

Consider an invertiblen ร— n matrix A such that the zero state is a stable equilibrium of the dynamical system xโ†’(t+1)=Axโ†’(t)What can you say about the stability of the systems

xโ†’(t+1)=(A-2In)xโ†’(t)

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

12. \(\left( {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{2}}&{\bf{2}}\\{\bf{2}}&{\bf{4}}&{\bf{2}}\\{\bf{2}}&{\bf{2}}&{\bf{4}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free