Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 13-20, find an invertible matrix \(P\) and a matrix \(C\) of the form \(\left( {\begin{aligned}{}a&{}&{ - b}\\b&{}&a\end{aligned}} \right)\) such that the given matrix has the form\(A = PC{P^{ - 1}}\). For Exercises 13-16, use information from Exercises 1-4.

18. \(\left( {\begin{aligned}{}1&{}&{ - 1}\\{.4}&{}&{.6}\end{aligned}} \right)\)

Short Answer

Expert verified

The invertible matrix and matrix are \(P = \left( {\begin{aligned}{}1&{}&{ - 3}\\2&{}&0\end{aligned}} \right)\;{\rm{and}}\;\;C = \left( {\begin{aligned}{}{.8}&{}&{ - .6}\\{.6}&{}&{.8}\end{aligned}} \right)\).

Step by step solution

01

Finding the matrix \(P\) and the matrix \(C\) 

Let \(A\) be a \(2 \times 2\) with eigenvalues of the form \(a \pm bi\) , and let \(v\) be the eigenvector corresponding to the eigenvalue \(a - bi\), then the matrix \(P\) will be \(P = \left( {\begin{aligned}{}{{\mathop{\rm Re}\nolimits} v}&{{\mathop{\rm Im}\nolimits} v}\end{aligned}} \right)\).

The matrix \(C\) can be obtained by \(C = {P^{ - 1}}AP\).

02

Find the Invertible matrix

Given that \(A = \left( {\begin{aligned}{}1&{}&{ - 1}\\{.4}&{}&{.6}\end{aligned}} \right)\).

Then,

\(\left( {A - \lambda {I_2}} \right) = \left( {\begin{aligned}{}{1 - \lambda }&{}&{ - 1}\\{.4}&{}&{.6 - \lambda }\end{aligned}} \right)\)

Let characteristic equation of \(A\) will be,

\(\begin{aligned}{}\det \left( {\lambda {I_2} - A} \right) &= 0\\(1 - \lambda )(.6 - \lambda ) + .4 &= 0\\{\lambda ^2} - 1.6\lambda + .6 + .4 &= 0\\{\lambda ^2} - 1.6\lambda + 1 &= 0\end{aligned}\)

Further solving we get,

\(\begin{aligned}{}{\lambda ^2} - 1.6\lambda + 1 &= 0\\\left( {\lambda - \left( {.8 + .6i} \right)} \right)\left( {\lambda - \left( {.8 - .6i} \right)} \right) &= 0\end{aligned}\).

This implies that the roots of\({\lambda ^2} - 1.6\lambda + 1 = 0\)are \(.8 \pm .6i\).

Hence the eigenvalues of\(A\)are \(.8 \pm .6i\).

Now let\({X_1} = \left( {\begin{aligned}{}{{x_1}}\\{{x_2}}\end{aligned}} \right)\)be an eigenvector corresponding to the eigenvalue\(.8 - .6i\).

Therefor\(A{X_1} = \left( {.8 - .6i} \right){X_1}\) then we get,

\(\begin{aligned}{}\left( {A - \left( {.8 - .6i} \right)I} \right){X_1} &= 0\\\left( {\begin{aligned}{}{.2 + .6i}&{}&{ - 1}\\{.4}&{}&{ - .2 + .6i}\end{aligned}} \right)\left( {\begin{aligned}{}{{x_1}}\\{{x_2}}\end{aligned}} \right) &= \left( {\begin{aligned}{}0\\0\end{aligned}} \right)\end{aligned}\)

Therefore,

\(\begin{aligned}{}.4{x_1} + \left( { - .2 + .6i} \right){x_2} &= 0\\{\rm{ (}}{\rm{.4) }}{x_1} &= \left( {.2 - .6i} \right){x_2}\\{x_1} &= \frac{{1 - 3i}}{2}{x_2}\end{aligned}\)

This\({x_2}\)is a free variable.

03

Find the matrix further

Therefore\(\left( {\begin{aligned}{}{1 - 3i}\\2\end{aligned}} \right)\)is an eigenvector corresponding to the eigenvalue\(.8 - .6i\).

Then we get,

\(P = \left( {\begin{aligned}{}{{\mathop{\rm Re}\nolimits} {X_1}}&{{\mathop{\rm Im}\nolimits} {X_1}}\end{aligned}} \right) \Rightarrow P = \left( {\begin{aligned}{}1&{ - 3}\\2&0\end{aligned}} \right)\)

And then,

\(\begin{aligned}{}C &= {P^{ - 1}}AP\\ &= \frac{1}{6}\left( {\begin{aligned}{}0&{}&3\\{ - 2}&{}&1\end{aligned}} \right)\left( {\begin{aligned}{}1&{}&{ - 1}\\{.4}&{}&{.6}\end{aligned}} \right)\left( {\begin{aligned}{}1&{}&{ - 3}\\2&{}&0\end{aligned}} \right)\\ &= \left( {\begin{aligned}{}{.8}&{}&{ - .6}\\{.6}&{}&{.8}\end{aligned}} \right)\end{aligned}\)

Thus, the required matrices are\(P = \left( {\begin{aligned}{}1&{}&{ - 3}\\2&{}&0\end{aligned}} \right)\quad {\rm{and}}\;C = \left( {\begin{aligned}{}{.8}&{}&{ - .6}\\{.6}&{}&{.8}\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

12. \(\left( {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{2}}&{\bf{2}}\\{\bf{2}}&{\bf{4}}&{\bf{2}}\\{\bf{2}}&{\bf{2}}&{\bf{4}}\end{array}} \right)\)

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

9. \(\left( {\begin{array}{*{20}{c}}3&{ - 1}\\1&5\end{array}} \right)\)

Question 20: Use a property of determinants to show that \(A\) and \({A^T}\) have the same characteristic polynomial.

M] In Exercises 19 and 20, find (a) the largest eigenvalue and (b) the eigenvalue closest to zero. In each case, set \[{{\bf{x}}_{\bf{0}}}{\bf{ = }}\left( {{\bf{1,0,0,0}}} \right)\] and carry out approximations until the approximating sequence seems accurate to four decimal places. Include the approximate eigenvector.

19.\[A{\bf{=}}\left[{\begin{array}{*{20}{c}}{{\bf{10}}}&{\bf{7}}&{\bf{8}}&{\bf{7}}\\{\bf{7}}&{\bf{5}}&{\bf{6}}&{\bf{5}}\\{\bf{8}}&{\bf{6}}&{{\bf{10}}}&{\bf{9}}\\{\bf{7}}&{\bf{5}}&{\bf{9}}&{{\bf{10}}}\end{array}} \right]\]

Use Exercise 12 to find the eigenvalues of the matrices in Exercises 13 and 14.

13. \(A = \left( {\begin{array}{*{20}{c}}3&{ - 2}&8\\0&5&{ - 2}\\0&{ - 4}&3\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free