Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 13-20, find an invertible matrix \(P\) and a matrix \(C\) of the form \(\left( {\begin{aligned}{}a&{}&{ - b}\\b&{}&a\end{aligned}} \right)\) such that the given matrix has the form\(A = PC{P^{ - 1}}\). For Exercises 13-16, use information from Exercises 1-4.

17. \(\left( {\begin{aligned}{}1&{}&{ - .8}\\4&{}&{ - 2.2}\end{aligned}} \right)\)

Short Answer

Expert verified

The invertible matrix \(P\)and matrix \(C\) are \(C = \left( {\begin{aligned}{}{ - .6}&{}&{ - .8}\\{.8}&{}&{ - .6}\end{aligned}} \right),P = \left( {\begin{aligned}{}2&{}&{ - 1}\\5&{}&0\end{aligned}} \right)\).

Step by step solution

01

Finding the matrix \(P\) and the matrix \(C\)

Let \(A\) be a \(2 \times 2\) with eigenvalues of the form \(a \pm bi\) , and let \(v\) be the eigenvector corresponding to the eigenvalue \(a - bi\), then the matrix \(P\) will be \(P = \left( {\begin{aligned}{}{{\mathop{\rm Re}\nolimits} v}&{}&{{\mathop{\rm Im}\nolimits} v}\end{aligned}} \right)\).

The matrix \(C\) can be obtained by \(C = {P^{ - 1}}AP\).

02

Find the Invertible matrix 

Given that \(A = \left( {\begin{aligned}{}1&{}&{ - .8}\\4&{}&{ - 2.2}\end{aligned}} \right)\)

The characteristic equation is \({\lambda ^2} + 1.2\lambda + 1 = 0\).

Solving this we get \(\lambda = - 0.6 \pm 8i\).

To find an eigenvector corresponding to \( - .6 - .8i\) we compute,

\(A - \left( { - .6 - .8i} \right)I = \left( {\begin{aligned}{}{1.6 + .8i}&{}&{ - .8}\\4&{}&{ - 1.6 + .9i}\end{aligned}} \right)\)

The equation \(\left( {A - \left( { - .6 - .8i} \right)I} \right)v = 0\) gives the system of linear equations,

\(\begin{aligned}{}\left( {1.6 + 0.8i} \right)x - 0.8y &= 0\\4x + \left( { - 1.6 + .8i} \right)y &= 0\end{aligned}\)

Now from the 2nd equation, we get,

\(x = \left( {\left( {2 - i} \right)/5} \right)y\) with \(y\) is a free variable.

The eigenvector corresponds to \( - .6 - .8i\) is \(v = \left( {\begin{aligned}{}{2 - i}\\5\end{aligned}} \right)\).

By Theorem 9,

\(P = \left( {\begin{aligned}{}{{\rm{ Re v}}}&{}&{{\mathop{\rm Im}\nolimits} v}\end{aligned}} \right) \Rightarrow P = \left( {\begin{aligned}{}2&{}&{ - 1}\\5&{}&0\end{aligned}} \right)\)

03

Find the matrix  

After that, we can find the matrix by using\(C = {P^{ - 1}}AP\).

\(\begin{aligned}{}C {}&= {P^{ - 1}}AP\\ {}&= \frac{1}{5}\left( {\begin{aligned}{}0&{}&1\\{ - 5}&{}&1\end{aligned}} \right)\left( {\begin{aligned}{}1&{}&{ - .8}\\4&{ - 2.2}\end{aligned}} \right)\left( {\begin{aligned}{}2&{}&{ - 1}\\5&{}&0\end{aligned}} \right)\\ &= \left( {\begin{aligned}{}{ - .6}&{}&{ - .8}\\{.8}&{}&{ - .6}\end{aligned}} \right)\end{aligned}\)

Therefore, the matrixes are \(C = \left( {\begin{aligned}{}{ - .6}&{}&{ - .8}\\{.8}&{}&{ - .6}\end{aligned}} \right)\) and \(P = \left( {\begin{aligned}{}2&{}&{ - 1}\\5&{}&0\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Is \(\left( {\begin{array}{*{20}{c}}{ - 1 + \sqrt 2 }\\1\end{array}} \right)\) an eigenvalue of \(\left( {\begin{array}{*{20}{c}}2&1\\1&4\end{array}} \right)\)? If so, find the eigenvalue.

Question 19: Let \(A\) be an \(n \times n\) matrix, and suppose A has \(n\) real eigenvalues, \({\lambda _1},...,{\lambda _n}\), repeated according to multiplicities, so that \(\det \left( {A - \lambda I} \right) = \left( {{\lambda _1} - \lambda } \right)\left( {{\lambda _2} - \lambda } \right) \ldots \left( {{\lambda _n} - \lambda } \right)\) . Explain why \(\det A\) is the product of the n eigenvalues of A. (This result is true for any square matrix when complex eigenvalues are considered.)

Exercises 19โ€“23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

21. Use mathematical induction to prove that for \(n \ge {\bf{2}}\),\(\begin{aligned}{c}det\left( {{C_p} - \lambda I} \right) = {\left( { - {\bf{1}}} \right)^n}\left( {{a_{\bf{0}}} + {a_{\bf{1}}}\lambda + ... + {a_{n - {\bf{1}}}}{\lambda ^{n - {\bf{1}}}} + {\lambda ^n}} \right)\\ = {\left( { - {\bf{1}}} \right)^n}p\left( \lambda \right)\end{aligned}\)

(Hint: Expanding by cofactors down the first column, show that \(det\left( {{C_p} - \lambda I} \right)\) has the form \(\left( { - \lambda B} \right) + {\left( { - {\bf{1}}} \right)^n}{a_{\bf{0}}}\) where \(B\) is a certain polynomial (by the induction assumption).)

Exercises 19โ€“23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

19. Write the companion matrix \({C_p}\) for \(p\left( t \right) = {\bf{6}} - {\bf{5}}t + {t^{\bf{2}}}\), and then find the characteristic polynomial of \({C_p}\).

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

4. \(\left[ {\begin{array}{*{20}{c}}5&-3\\-4&3\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free