Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 13-20, find an invertible matrix \(P\) and a matrix \(C\) of the form \(\left( {\begin{aligned}{}a&{}&{ - b}\\b&{}&a\end{aligned}} \right)\) such that the given matrix has the form \(A = PC{P^{ - 1}}\). For Exercises 13-16, use information from Exercises 1-4.

15.\(\left( {\begin{aligned}{}1&{}&5\\{ - 2}&{}&3\end{aligned}} \right)\)

Short Answer

Expert verified

The invertible matrix \(P\) and matrix \(C\) are \(P = \left( {\begin{aligned}{}1&{}&3\\2&{}&0\end{aligned}} \right),C = \left( {\begin{aligned}{}2&{}&{ - 3}\\3&{}&2\end{aligned}} \right)\).

Step by step solution

01

Finding the matrix \(P\) and the matrix \(C\)  such that  \(A = PC{P^{ - 1}}\)

Let \(A\) be a \(2 \times 2\) with eigenvalues of the form \(a \pm bi\) , and let \(v\) be the eigenvector corresponding to the eigenvalue \(a - bi\), then the matrix \(P\) will be \(P = \left( {\begin{aligned}{}{{\mathop{\rm Re}\nolimits} v}&{{\mathop{\rm Im}\nolimits} v}\end{aligned}} \right)\).

The matrix \(C\) can be obtained by \(C = {P^{ - 1}}AP\).

02

Find the Invertible matrix

From Exercise 3, the eigenvalues of\(A\)are\(\lambda = 2 \pm 3i\), and \(v = \left( {\begin{aligned}{}{1 + 3i}\\2\end{aligned}} \right)\) be the eigenvector correspond to the eigenvalue \(\lambda = 2 - 3i\).

By theorem 9,

\(\begin{aligned}{}P &= \left( {\begin{aligned}{}{{\mathop{\rm Re}\nolimits} v}&{}&{{\mathop{\rm Im}\nolimits} v}\end{aligned}} \right)\\P &= \left( {\begin{aligned}{}1&{}&3\\2&{}&0\end{aligned}} \right)\end{aligned}\)

Substitute the value of\({P^{ - 1}}\), \(P\) and \(A\) into \(C = {P^{ - 1}}AP\) to obtain matrix \(C\).

\(\begin{aligned}{}C &= {P^{ - 1}}AP\\C &= \frac{1}{6}\left( {\begin{aligned}{}0&{}&{ - 3}\\{ - 2}&{}&1\end{aligned}} \right)\left( {\begin{aligned}{}1&{}&5\\{ - 2}&{}&3\end{aligned}} \right)\left( {\begin{aligned}{}1&{}&3\\2&{}&0\end{aligned}} \right)\\C &= \left( {\begin{aligned}{}2&{}&{ - 3}\\3&{}&2\end{aligned}} \right)\end{aligned}\)

Hence \(P = \left( {\begin{aligned}{}1&{}&3\\2&{}&0\end{aligned}} \right)\) and \(C = \left( {\begin{aligned}{}2&{}&{ - 3}\\3&{}&2\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises \({\bf{3}}\) and \({\bf{4}}\), use the factorization \(A = PD{P^{ - {\bf{1}}}}\) to compute \({A^k}\) where \(k\) represents an arbitrary positive integer.

3. \(\left( {\begin{array}{*{20}{c}}a&0\\{3\left( {a - b} \right)}&b\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0\\3&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}a&0\\0&b\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\{ - 3}&1\end{array}} \right)\)

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

4. \(\left[ {\begin{array}{*{20}{c}}5&-3\\-4&3\end{array}} \right]\)

Assume the mapping\(T:{{\rm P}_2} \to {{\rm P}_{\bf{2}}}\)defined by \(T\left( {{a_0} + {a_1}t + {a_2}{t^2}} \right) = 3{a_0} + \left( {5{a_0} - 2{a_1}} \right)t + \left( {4{a_1} + {a_2}} \right){t^2}\) is linear. Find the matrix representation of\(T\) relative to the bases \(B = \left\{ {1,t,{t^2}} \right\}\).

For the matrix A, find real closed formulas for the trajectoryx(t+1)=Ax¯(t)where x=[01]. Draw a rough sketch

A=[15-27]

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

21. Use mathematical induction to prove that for \(n \ge {\bf{2}}\),\(\begin{aligned}{c}det\left( {{C_p} - \lambda I} \right) = {\left( { - {\bf{1}}} \right)^n}\left( {{a_{\bf{0}}} + {a_{\bf{1}}}\lambda + ... + {a_{n - {\bf{1}}}}{\lambda ^{n - {\bf{1}}}} + {\lambda ^n}} \right)\\ = {\left( { - {\bf{1}}} \right)^n}p\left( \lambda \right)\end{aligned}\)

(Hint: Expanding by cofactors down the first column, show that \(det\left( {{C_p} - \lambda I} \right)\) has the form \(\left( { - \lambda B} \right) + {\left( { - {\bf{1}}} \right)^n}{a_{\bf{0}}}\) where \(B\) is a certain polynomial (by the induction assumption).)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free