Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 13-20, find an invertible matrix \(P\) and a matrix \(C\) of the form \(\left( {\begin{aligned}{}a&{}&{ - b}\\b&{}&a\end{aligned}} \right)\) such that the given matrix has the form\(A = PC{P^{ - 1}}\). For Exercises 13-16, use information from Exercises 1-4.

13. \(\left( {\begin{aligned}{}1&{}&{ - 2}\\1&{}&3\end{aligned}} \right)\)

Short Answer

Expert verified

The invertible matrix \(P\)and matrix \(C\) are \(P = \left( {\begin{aligned}{}{ - 1}&{}&{ - 1}\\1&{}&0\end{aligned}} \right)\) and \(C = \left( {\begin{aligned}{}2&{}&{ - 1}\\1&2\end{aligned}} \right)\).

Step by step solution

01

Finding the matrix \(P\) and the matrix \(C\) such that \(A = PC{P^{ - 1}}\)

Let \(A\) be a \(2 \times 2\) with eigenvalues of the form \(a \pm bi\) , and let \(v\) be the eigenvector corresponding to the eigenvalue \(a - bi\), then the matrix \(P\) will be \(P = \left( {\begin{aligned}{}{{\mathop{\rm Re}\nolimits} v}&{}&{{\mathop{\rm Im}\nolimits} v}\end{aligned}} \right)\).

The matrix \(C\) can be obtained by \(C = {P^{ - 1}}AP\).

02

Find the eigenvalues

Given that \(A = \left( {\begin{aligned}{}1&{}&{ - 2}\\1&{}&3\end{aligned}} \right)\) .

Find the eigenvalues by using \(\det \left( {A - \lambda I} \right) = 0\).

\(\begin{aligned}{}\det \left( {A - \lambda I} \right) &= 0\\\left( {1 - \lambda } \right)\left( {3 - \lambda } \right) + 2 &= 0\\3 - \lambda - 3\lambda + {\lambda ^2} + 5 &= 0\\{\lambda ^2} - 4\lambda + 5 &= 0\\\lambda &= \frac{{4 \pm \sqrt {16 - 20} }}{2}\\\lambda &= 2 \pm i\end{aligned}\)

Thus, the eigenvalues are \(\lambda = 2 \pm i\).

03

Find eigenvector and invertible matrix

For the eigenvalue \(\lambda = 2 - i\)we have,

\(\begin{aligned}{}\left( {A - \lambda I} \right)v &= 0\\\left( {\left( {\begin{aligned}{}1&{}&{ - 2}\\1&{}&3\end{aligned}} \right) - \left( {2 - i} \right)\left( {\begin{aligned}{}1&{}&0\\0&{}&1\end{aligned}} \right)} \right)\left( {\begin{aligned}{}x\\y\end{aligned}} \right) &= 0\\\left( {\begin{aligned}{}{ - 1 + i}&{}&{ - 2}\\1&{}&{1 + i}\end{aligned}} \right)\left( {\begin{aligned}{}x\\y\end{aligned}} \right) &= 0\end{aligned}\)

Now considering the augmented matrix we get,

\(\begin{aligned}{}\left( {\begin{aligned}{}{ - 1 + i}&{}&{ - 2}&{}&|&{}&0\\1&{}&{1 + i}&{}&|&{}&0\end{aligned}} \right){\rm{ }}{R_2} \to \left( { - 1 + i} \right){R_2}\\ \sim \left( {\begin{aligned}{}{ - 1 + i}&{}&{ - 2}&{}&|&{}&0\\{ - 1 + i}&{}&{ - 2}&{}&|&{}&0\end{aligned}} \right){\rm{ }}{R_2} \to {R_2} - {R_1}\\ \sim \left( {\begin{aligned}{}{ - 1 + i}&{}&{ - 2}&{}&|&{}&0\\0&{}&0&{}&|&{}&0\end{aligned}} \right)\end{aligned}\)

Hence, we get\(y\)is a free variable.

Let\(y = 1\)then,

\(\begin{aligned}{}\left( { - 1 + i} \right)x - 2 &= 0\\x &= \frac{2}{{ - 1 + i}}\\x &= \frac{{2\left( {1 + i} \right)}}{{ - 2}}\\x &= - 1 - i\end{aligned}\)

Hence \(v = \left( {\begin{aligned}{}x\\y\end{aligned}} \right) \Rightarrow v = \left( {\begin{aligned}{}{ - 1 - i}\\1\end{aligned}} \right)\).

Now \(P = \left( {\begin{aligned}{}{{\mathop{\rm Re}\nolimits} v}&{}&{{\mathop{\rm Im}\nolimits} v}\end{aligned}} \right) \Rightarrow P = \left( {\begin{aligned}{}{ - 1}&{}&{ - 1}\\1&{}&0\end{aligned}} \right)\).

04

Find matrix \(C\) by using \(C = {P^{ - 1}}AP\) 

Write the matrix\({P^{ - 1}}\).

\({P^{ - 1}} = \frac{1}{2}\left( {\begin{aligned}{}0&{}&1\\1&{}&{ - 1}\end{aligned}} \right)\)

Substitute the value of\({P^{ - 1}}\), \(P\) and \(A\) into \(C = {P^{ - 1}}AP\) to obtain matrix \(C\).

\(\begin{aligned}{}C &= {P^{ - 1}}AP\\C &= \frac{1}{2}\left( {\begin{aligned}{}0&{}&1\\1&{}&{ - 1}\end{aligned}} \right)\left( {\begin{aligned}{}1&{}&{ - 2}\\1&{}&3\end{aligned}} \right)\left( {\begin{aligned}{}{ - 1}&{}&{ - 1}\\1&{}&0\end{aligned}} \right)\\C &= \left( {\begin{aligned}{}2&{}&{ - 1}\\1&{}&2\end{aligned}} \right)\end{aligned}\)

The invertible matrix \(P\) and matrix \(C\) are \(P = \left( {\begin{aligned}{}{ - 1}&{}&{ - 1}\\1&{}&0\end{aligned}} \right)\) and \(C = \left( {\begin{aligned}{}2&{}&{ - 1}\\1&{}&2\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let\(T:{{\rm P}_2} \to {{\rm P}_3}\) be a linear transformation that maps a polynomial \({\bf{p}}\left( t \right)\) into the polynomial \(\left( {t + 5} \right){\bf{p}}\left( t \right)\).

  1. Find the image of\({\bf{p}}\left( t \right) = 2 - t + {t^2}\).
  2. Show that \(T\) is a linear transformation.
  3. Find the matrix for \(T\) relative to the bases \(\left\{ {1,t,{t^2}} \right\}\) and \(\left\{ {1,t,{t^2},{t^3}} \right\}\).

Consider an invertible n ร— n matrix A such that the zero state is a stable equilibrium of the dynamical system xโ†’(t+1)=ATxโ†’(t)What can you say about the stability of the systems.

xโ†’(t+1)=ATxโ†’(t)

Question: For the matrices in Exercises 15-17, list the eigenvalues, repeated according to their multiplicities.

16. \(\left[ {\begin{array}{*{20}{c}}5&0&0&0\\8&- 4&0&0\\0&7&1&0\\1&{ - 5}&2&1\end{array}} \right]\)

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

12. \(\left( {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{2}}&{\bf{2}}\\{\bf{2}}&{\bf{4}}&{\bf{2}}\\{\bf{2}}&{\bf{2}}&{\bf{4}}\end{array}} \right)\)

Assume the mapping\(T:{{\rm P}_2} \to {{\rm P}_{\bf{2}}}\)defined by \(T\left( {{a_0} + {a_1}t + {a_2}{t^2}} \right) = 3{a_0} + \left( {5{a_0} - 2{a_1}} \right)t + \left( {4{a_1} + {a_2}} \right){t^2}\) is linear. Find the matrix representation of\(T\) relative to the bases \(B = \left\{ {1,t,{t^2}} \right\}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free