Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let\(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2},{{\bf{b}}_3}} \right\}\) be a basis for a vector space\(V\). Find \(T\left( {3{{\bf{b}}_1} - 4{{\bf{b}}_2}} \right)\) when \(T\) isa linear transformation from \(V\) to \(V\) whose matrix relative to \(B\) is

\({\left( T \right)_B} = \left( {\begin{aligned}0&{}&{ - 6}&{}&1\\0&{}&5&{}&{ - 1}\\1&{}&{ - 2}&{}&7\end{aligned}} \right)\)

Short Answer

Expert verified

The value of\({\left( {T\left( {3{{\bf{b}}_1} - 4{{\bf{b}}_2}} \right)} \right)_B}\)is \(\left( {\begin{aligned}{24}\\{ - 20}\\{11}\end{aligned}} \right)\), and \(T\left( {3{{\bf{b}}_1} - 4{{\bf{b}}_2}} \right) = 24{{\bf{b}}_1} - 20{{\bf{b}}_2} + 11{{\bf{b}}_3}\).

Step by step solution

01

The vector form

Let \({\left( {\bf{x}} \right)_B} = 3{{\bf{b}}_1} - 4{{\bf{b}}_2}\), which can also be written as \({\left( {\bf{x}} \right)_B} = 3{{\bf{b}}_1} - 4{{\bf{b}}_2} + 0{{\bf{b}}_3}\).

Write \({\left( {\bf{x}} \right)_B}\) in the vector form.

\({\left( {\bf{x}} \right)_B} = \left( {\begin{aligned}3\\{ - 4}\\0\end{aligned}} \right)\)

02

Linear transformation forms \(V\) into \(V\) 

The \(B\)-matrix for \(T\) or a matrix for \(T\) relative to \(B\) for \(T:V \to V\) is given by,

\({\left( {T\left( {\bf{x}} \right)} \right)_B} = {\left( T \right)_B}{\left( {\bf{x}} \right)_B}\)

03

Find linear transformation form \(V\) into \(V\)

The given matrix is \({\left( T \right)_B} = \left( {\begin{aligned}0&{}&{ - 6}&{}&1\\0&{}&5&{}&{ - 1}\\1&{}&{ - 2}&{}&7\end{aligned}} \right)\).

Write\({\left( {T\left( {\bf{x}} \right)} \right)_B} = {\left( T \right)_B}{\left( {\bf{x}} \right)_B}\).

\(\begin{aligned}{\left( {T\left( {3{{\bf{b}}_1} - 4{{\bf{b}}_2}} \right)} \right)_B} &= {\left( T \right)_B}{\left( {3{{\bf{b}}_1} - 4{{\bf{b}}_2}} \right)_B}\\ &= \left( {\begin{aligned}0&{ - 6}&1\\0&5&{ - 1}\\1&{ - 2}&7\end{aligned}} \right)\left( {\begin{aligned}3\\{ - 4}\\0\end{aligned}} \right)\\ &= \left( {\begin{aligned}{0\left( 3 \right) + \left( { - 6} \right)\left( { - 4} \right) + 1\left( 0 \right)}\\{0\left( 3 \right) + \left( 5 \right)\left( { - 4} \right) + \left( { - 1} \right)\left( 0 \right)}\\{1\left( 3 \right) + \left( { - 2} \right)\left( { - 4} \right) + 7\left( 0 \right)}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{24}\\{ - 20}\\{11}\end{aligned}} \right)\end{aligned}\)

So, the required matrix is \(\left( {\begin{aligned}{24}\\{ - 20}\\{11}\end{aligned}} \right)\).

Thus, \(T\left( {3{{\bf{b}}_1} - 4{{\bf{b}}_2}} \right) = 24{{\bf{b}}_1} - 20{{\bf{b}}_2} + 11{{\bf{b}}_3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

  1. \(\left[ {\begin{array}{*{20}{c}}2&7\\7&2\end{array}} \right]\)

Show that \(I - A\) is invertible when all the eigenvalues of \(A\) are less than 1 in magnitude. (Hint: What would be true if \(I - A\) were not invertible?)

Let\(\varepsilon = \left\{ {{{\bf{e}}_1},{{\bf{e}}_2},{{\bf{e}}_3}} \right\}\) be the standard basis for \({\mathbb{R}^3}\),\(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2},{{\bf{b}}_3}} \right\}\) be a basis for a vector space \(V\) and\(T:{\mathbb{R}^3} \to V\) be a linear transformation with the property that

\(T\left( {{x_1},{x_2},{x_3}} \right) = \left( {{x_3} - {x_2}} \right){{\bf{b}}_1} - \left( {{x_1} - {x_3}} \right){{\bf{b}}_2} + \left( {{x_1} - {x_2}} \right){{\bf{b}}_3}\)

  1. Compute\(T\left( {{{\bf{e}}_1}} \right)\), \(T\left( {{{\bf{e}}_2}} \right)\) and \(T\left( {{{\bf{e}}_3}} \right)\).
  2. Compute \({\left( {T\left( {{{\bf{e}}_1}} \right)} \right)_B}\), \({\left( {T\left( {{{\bf{e}}_2}} \right)} \right)_B}\) and \({\left( {T\left( {{{\bf{e}}_3}} \right)} \right)_B}\).
  3. Find the matrix for \(T\) relative to \(\varepsilon \), and\(B\).

Define \(T:{{\rm P}_2} \to {\mathbb{R}^3}\) by \(T\left( {\bf{p}} \right) = \left( {\begin{aligned}{{\bf{p}}\left( { - 1} \right)}\\{{\bf{p}}\left( 0 \right)}\\{{\bf{p}}\left( 1 \right)}\end{aligned}} \right)\).

  1. Find the image under\(T\)of\({\bf{p}}\left( t \right) = 5 + 3t\).
  2. Show that \(T\) is a linear transformation.
  3. Find the matrix for \(T\) relative to the basis \(\left\{ {1,t,{t^2}} \right\}\)for \({{\rm P}_2}\)and the standard basis for \({\mathbb{R}^3}\).

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

5. \(\left[ {\begin{array}{*{20}{c}}2&1\\-1&4\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free