Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2},{{\bf{b}}_3}} \right\}\)be a basis for a vector space \(V\) and\(T:V \to {\mathbb{R}^2}\) be a linear transformation with the property that

\(T\left( {{x_1}{{\bf{b}}_1} + {x_2}{{\bf{b}}_2} + {x_3}{{\bf{b}}_3}} \right) = \left( {\begin{aligned}{2{x_1} - 4{x_2} + 5{x_3}}\\{ - {x_2} + 3{x_3}}\end{aligned}} \right)\)

Find the matrix for \(T\) relative to \(B\) and the standard basis for \({\mathbb{R}^2}\).

Short Answer

Expert verified

The matrix for \(T\) relative to \(B\) and standard basis for \({\mathbb{R}^2}\) is \(\left( {\begin{aligned}2&{}&{ - 4}&{}&5\\0&{}&{ - 1}&{}&3\end{aligned}} \right)\).

Step by step solution

01

The standard basis 

The standard basis for \({\mathbb{R}^2}\) is given by \({{\bf{e}}_1},{{\bf{e}}_2}\).

\({{\bf{e}}_1} = \left( {\begin{aligned}1\\0\end{aligned}} \right)\), \({{\bf{e}}_2} = \left( {\begin{aligned}0\\1\end{aligned}} \right)\)

02

Find the coordinate vectors for standard basis 

Let \(\varepsilon = \left\{ {{{\bf{e}}_1},{{\bf{e}}_2}} \right\}\).

Find \({\left( {T\left( {{{\bf{b}}_1}} \right)} \right)_\varepsilon }\) by using \(T\left( {{x_1}{{\bf{b}}_1},{x_2}{{\bf{b}}_2},{x_3}{{\bf{b}}_3}} \right) = \left( {\begin{aligned}{2{x_1} - 4{x_2} + 5{x_3}}\\{ - {x_2} + 3{x_3}}\end{aligned}} \right)\).

\(\begin{aligned}{c}{\left( {T\left( {{{\bf{b}}_1}} \right)} \right)_\varepsilon } &= T\left( {1{{\bf{b}}_1} + 0{{\bf{b}}_2} + 0{{\bf{b}}_3}} \right)\\ &= \left( {\begin{aligned}2\\0\end{aligned}} \right)\end{aligned}\)

Find \({\left( {T\left( {{{\bf{b}}_2}} \right)} \right)_\varepsilon }\) by using \(T\left( {{x_1}{{\bf{b}}_1},{x_2}{{\bf{b}}_2},{x_3}{{\bf{b}}_3}} \right) = \left( {\begin{aligned}{2{x_1} - 4{x_2} + 5{x_3}}\\{ - {x_2} + 3{x_3}}\end{aligned}} \right)\).

\(\begin{aligned}{c}{\left( {T\left( {{{\bf{b}}_2}} \right)} \right)_\varepsilon } &= T\left( {0{{\bf{b}}_1} + 1{{\bf{b}}_2} + 0{{\bf{b}}_3}} \right)\\ &= \left( {\begin{aligned}{ - 4}\\{ - 1}\end{aligned}} \right)\end{aligned}\)

Find \({\left( {T\left( {{{\bf{b}}_3}} \right)} \right)_\varepsilon }\) by using \(T\left( {{x_1}{{\bf{b}}_1},{x_2}{{\bf{b}}_2},{x_3}{{\bf{b}}_3}} \right) = \left( {\begin{aligned}{2{x_1} - 4{x_2} + 5{x_3}}\\{ - {x_2} + 3{x_3}}\end{aligned}} \right)\).

\(\begin{aligned}{c}{\left( {T\left( {{{\bf{b}}_3}} \right)} \right)_\varepsilon } &= T\left( {0{{\bf{b}}_1} + 0{{\bf{b}}_2} + 1{{\bf{b}}_3}} \right)\\ &= \left( {\begin{aligned}5\\3\end{aligned}} \right)\end{aligned}\)

03

The matrix for a linear transformation

A matrix associated with a linear transformation \(T\) for \(V\) and \(W\) is given by \({\left( {T\left( {\bf{x}} \right)} \right)_C} = \left( {\begin{aligned}{{{\left( {T\left( {{{\bf{b}}_1}} \right)} \right)}_C}}&{{{\left( {T\left( {{{\bf{b}}_2}} \right)} \right)}_C}}& \cdots &{{{\left( {T\left( {{{\bf{b}}_n}} \right)} \right)}_C}}\end{aligned}} \right)\), where \(V\) and \(W\) are \(n\) and \(m\)-dimensional subspaces respectively, and \(B\), and\(C\) are the bases for \(V\), and \(W\).

04

Find the matrix for a linear transformation

Form a matrix \(T\) for the obtained vectors in step 2, by using the formula \({\left( {T\left( {\bf{x}} \right)} \right)_C} = \left( {\begin{aligned}{{{\left( {T\left( {{{\bf{b}}_1}} \right)} \right)}_C}}&{{{\left( {T\left( {{{\bf{b}}_2}} \right)} \right)}_C}}& \cdots &{{{\left( {T\left( {{{\bf{b}}_n}} \right)} \right)}_C}}\end{aligned}} \right)\), where \(n = 3\).

\(\begin{aligned}{\left( {T\left( {\bf{x}} \right)} \right)_\varepsilon } = \left( {\begin{aligned}{{{\left( {T\left( {{{\bf{b}}_1}} \right)} \right)}_\varepsilon }}&{{{\left( {T\left( {{{\bf{b}}_2}} \right)} \right)}_\varepsilon }}&{{{\left( {T\left( {{{\bf{b}}_3}} \right)} \right)}_\varepsilon }}\end{aligned}} \right)\\ = \left( {\begin{aligned}2&{}&{ - 4}&{}&5\\0&{}&{ - 1}&{}&3\end{aligned}} \right)\end{aligned}\)

So, the required matrix is \(\left( {\begin{aligned}2&{}&{ - 4}&{}&5\\0&{}&{ - 1}&{}&3\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 9โ€“16, find a basis for the eigenspace corresponding to each listed eigenvalue.

10. \(A = \left( {\begin{array}{*{20}{c}}{10}&{ - 9}\\4&{ - 2}\end{array}} \right)\), \(\lambda = 4\)

(M)Use a matrix program to diagonalize

\(A = \left( {\begin{aligned}{*{20}{c}}{ - 3}&{ - 2}&0\\{14}&7&{ - 1}\\{ - 6}&{ - 3}&1\end{aligned}} \right)\)

If possible. Use the eigenvalue command to create the diagonal matrix \(D\). If the program has a command that produces eigenvectors, use it to create an invertible matrix \(P\). Then compute \(AP - PD\) and \(PD{P^{{\bf{ - 1}}}}\). Discuss your results.

Question 19: Let \(A\) be an \(n \times n\) matrix, and suppose A has \(n\) real eigenvalues, \({\lambda _1},...,{\lambda _n}\), repeated according to multiplicities, so that \(\det \left( {A - \lambda I} \right) = \left( {{\lambda _1} - \lambda } \right)\left( {{\lambda _2} - \lambda } \right) \ldots \left( {{\lambda _n} - \lambda } \right)\) . Explain why \(\det A\) is the product of the n eigenvalues of A. (This result is true for any square matrix when complex eigenvalues are considered.)

Show that if \({\bf{x}}\) is an eigenvector of the matrix product \(AB\) and \(B{\rm{x}} \ne 0\), then \(B{\rm{x}}\) is an eigenvector of\(BA\).

Question: Construct a random integer-valued \(4 \times 4\) matrix \(A\), and verify that \(A\) and \({A^T}\) have the same characteristic polynomial (the same eigenvalues with the same multiplicities). Do \(A\) and \({A^T}\) have the same eigenvectors? Make the same analysis of a \(5 \times 5\) matrix. Report the matrices and your conclusions.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free