Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Verify the statements in Exercises 19–24. The matrices are square.

22. If \(A\) is diagonalizable and B is similar to A, then \(B\) is also diagonalizable.

Short Answer

Expert verified

It is proved that \(B\) is diagonalizable

Step by step solution

01

Similar matrices

When \(A\) is diagonalizable, then \(A\) = PD{P^{ - 1))\) for any \(P\). Moreover, when \(B\) is similar to \(A\), then \(B = QA{Q^{ - 1))\) for any \(Q\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Exercises 9-14 require techniques section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for \(3 \times 3\) determinants described prior to Exercise 15-18 in Section 3.1. [Note: Finding the characteristic polynomial of a \(3 \times 3\) matrix is not easy to do with just row operations, because the variable \(\lambda \) is involved.

13. \(\left[ {\begin{array}{*{20}{c}}6&- 2&0\\- 2&9&0\\5&8&3\end{array}} \right]\)

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

2. \(\left[ {\begin{array}{*{20}{c}}5&3\\3&5\end{array}} \right]\)

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

20. Let \(p\left( t \right){\bf{ = }}\left( {t{\bf{ - 2}}} \right)\left( {t{\bf{ - 3}}} \right)\left( {t{\bf{ - 4}}} \right){\bf{ = - 24 + 26}}t{\bf{ - 9}}{t^{\bf{2}}}{\bf{ + }}{t^{\bf{3}}}\). Write the companion matrix for \(p\left( t \right)\), and use techniques from chapter \({\bf{3}}\) to find the characteristic polynomial.

Consider an invertible n × n matrix A such that the zero state is a stable equilibrium of the dynamical system x(t+1)=Ax(t)What can you say about the stability of the systems

x(t+1)=-Ax(t)

If \(p\left( t \right) = {c_0} + {c_1}t + {c_2}{t^2} + ...... + {c_n}{t^n}\), define \(p\left( A \right)\) to be the matrix formed by replacing each power of \(t\) in \(p\left( t \right)\)by the corresponding power of \(A\) (with \({A^0} = I\) ). That is,

\(p\left( t \right) = {c_0} + {c_1}I + {c_2}{I^2} + ...... + {c_n}{I^n}\)

Show that if \(\lambda \) is an eigenvalue of A, then one eigenvalue of \(p\left( A \right)\) is\(p\left( \lambda \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free