Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 11 and 12, find the \(B\)-matrix for the transformation \({\bf{x}} \mapsto A{\bf{x}}\), when \(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2}} \right\}\).

11.\(A = \left( {\begin{aligned}3&{}&4\\{ - 1}&{}&{ - 1}\end{aligned}} \right)\), \({{\bf{b}}_1} = \left( {\begin{aligned}2\\{ - 1}\end{aligned}} \right)\), \({{\bf{b}}_2} = \left( {\begin{aligned}1\\2\end{aligned}} \right)\)

Short Answer

Expert verified

The \(B\)-matrix is \(\left( {\begin{aligned}1&{}&5\\0&{}&1\end{aligned}} \right)\).

Step by step solution

01

Theorem

Diagonal Matrix Representation:Assume that \(A = PD{P^{ - 1}}\), then, \(D\) is the \(B\)-matrix for the transformation \({\bf{x}} \mapsto A{\bf{x}}\), and \(B\) is the basis for \({\mathbb{R}^n}\) formed from the columns of \(P\), where \(D\) is the \(n \times n\) diagonal matrix.

02

Determine \(P\)- matrix

The given matrix is \(A = \left( {\begin{aligned}3&{}&4\\{ - 1}&{}&{ - 1}\end{aligned}} \right)\), and the given vectors are \({{\bf{b}}_1} = \left( {\begin{aligned}2\\{ - 1}\end{aligned}} \right)\), \({{\bf{b}}_2} = \left( {\begin{aligned}1\\2\end{aligned}} \right)\).

Form a matrix \(P\) by using the vectors \({{\bf{b}}_1} = \left( {\begin{aligned}2\\{ - 1}\end{aligned}} \right)\) and \({{\bf{b}}_2} = \left( {\begin{aligned}1\\2\end{aligned}} \right)\) as its columns.

\(\begin{aligned}{c}P &= \left( {\begin{aligned}{{{\bf{b}}_1}}&{{{\bf{b}}_2}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}2&{}&1\\{ - 1}&2\end{aligned}} \right)\end{aligned}\)

The \(B\)-matrix can be found by finding \({P^{ - 1}}AP\), For which first find \({P^{ - 1}}\).

03

Formula to find inverse of a matrix

For any \(2 \times 2\) matrix \(A = \left( {\begin{aligned}a&{}&b\\c&{}&d\end{aligned}} \right)\), \({A^{ - 1}}\) is given by,

\({A^{ - 1}} = \frac{1}{{\det \left( A \right)}}\left( {\begin{aligned}d&{}&{ - b}\\{ - c}&{}&a\end{aligned}} \right)\), where \(\det \left( A \right) = ad - bc\).

04

Determine \({P^{ - 1}}\)

According to the formula of inverse, the determinant of the matrix is required. So the determinant of the matrix \(P\) is shown below:

\(\begin{aligned}\det \left( P \right) = 2 \cdot 2 - \left( { - 1} \right)1\\ = 4 + 1\\ = 5\end{aligned}\)

Now, find \({P^{ - 1}}\) by using the inverse formula:

\({P^{ - 1}} = \frac{1}{5}\left( {\begin{aligned}2&{}&1\\{ - 1}&{}&2\end{aligned}} \right)\)

05

Determine \(B\)- matrix

Find \({P^{ - 1}}AP\).

\(\begin{aligned}{P^{ - 1}}AP &= \frac{1}{5}\left( {\begin{aligned}2&{}&1\\{ - 1}&{}&2\end{aligned}} \right)\left( {\begin{aligned}3&{}&4\\{ - 1}&{}&{ - 1}\end{aligned}} \right)\left( {\begin{aligned}2&{}&1\\{ - 1}&{}&2\end{aligned}} \right)\\ &= \frac{1}{5}\left( {\begin{aligned}2&{}&1\\{ - 1}&{}&2\end{aligned}} \right)\left( {\left( {\begin{aligned}3&{}&4\\{ - 1}&{ - 1}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}2&{}&1\\{ - 1}&2\end{aligned}} \right)} \right)\\ &= \frac{1}{5}\left( {\begin{aligned}2&{}&1\\{ - 1}&2\end{aligned}} \right)\left( {\begin{aligned}{6 - 4}&{}&{3 + 8}\\{ - 2 + 1}&{}&{ - 1 - 2}\end{aligned}} \right)\\ &= \frac{1}{5}\left( {\begin{aligned}2&{}&1\\{ - 1}&{}&2\end{aligned}} \right)\left( {\begin{aligned}2&{}&{11}\\{ - 1}&{}&{ - 3}\end{aligned}} \right)\\ &= \frac{1}{5}\left( {\begin{aligned}5&{}&{25}\\0&{}&5\end{aligned}} \right)\\ &= \left( {\begin{aligned}1&{}&5\\0&{}&1\end{aligned}} \right)\end{aligned}\)

So, the required \(B\)-matrix is \(\left( {\begin{aligned}1&{}&5\\0&{}&1\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider an invertible n ร— n matrix A such that the zero state is a stable equilibrium of the dynamical system xโ†’(t+1)=Axโ†’(t) What can you say about the stability of the systems

xโ†’(t+1)=A-1xโ†’(t)

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

8. \(\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{1}}\\{\bf{0}}&{\bf{5}}\end{array}} \right)\)

Let\(D = \left\{ {{{\bf{d}}_1},{{\bf{d}}_2}} \right\}\) and \(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2}} \right\}\) be bases for vector space \(V\) and \(W\), respectively. Let \(T:V \to W\) be a linear transformation with the property that

\(T\left( {{{\bf{d}}_1}} \right) = 2{{\bf{b}}_1} - 3{{\bf{b}}_2}\), \(T\left( {{{\bf{d}}_2}} \right) = - 4{{\bf{b}}_1} + 5{{\bf{b}}_2}\)

Find the matrix for \(T\) relative to \(D\), and\(B\).

Let \({\bf{u}}\) be an eigenvector of \(A\) corresponding to an eigenvalue \(\lambda \), and let \(H\) be the line in \({\mathbb{R}^{\bf{n}}}\) through \({\bf{u}}\) and the origin.

  1. Explain why \(H\) is invariant under \(A\) in the sense that \(A{\bf{x}}\) is in \(H\) whenever \({\bf{x}}\) is in \(H\).
  2. Let \(K\) be a one-dimensional subspace of \({\mathbb{R}^{\bf{n}}}\) that is invariant under \(A\). Explain why \(K\) contains an eigenvector of \(A\).

For the matrices Afind real closed formulas for the trajectoryxโ†’(t+1)=Axโ†’(t)wherexโ†’(0)=[01]. Draw a rough sketchA=[1-31.2-2.6]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free