Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Define\(T:{{\rm P}_3} \to {\mathbb{R}^4}\)by\(T\left( {\bf{p}} \right) = \left( {\begin{aligned}{{\bf{p}}\left( { - 3} \right)}\\{{\bf{p}}\left( { - 1} \right)}\\{{\bf{p}}\left( 1 \right)}\\{{\bf{p}}\left( 3 \right)}\end{aligned}} \right)\).

  1. Show that \(T\) is a linear transformation.
  2. Find the matrix for \(T\) relative to the basis \(\left\{ {1,t,{t^2},{t^3}} \right\}\)for \({{\rm P}_3}\)and the standard basis for \({\mathbb{R}^4}\).

Short Answer

Expert verified
  1. It is verified that \(T\) is a linear transformation as both the properties of the transformation are satisfied.
  1. Matrix for \(T\) is relative to \(\left\{ {1,t,{t^2},{t^3}} \right\}\) for \({{\rm P}_3}\) and the standard basis for \({\mathbb{R}^4}\)is \(\left( {\begin{aligned}1&{}&{ - 3}&{}&9&{}&{ - 27}\\1&{}&{ - 1}&{}&1&{}&{ - 1}\\1&{}&1&{}&1&{}&1\\1&{}&3&{}&9&{}&{27}\end{aligned}} \right)\).

Step by step solution

01

Linear transformations

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be a transformation; this transformation is said to be a linear transformation if it satisfies the following two properties:

  1. \(T\left( {u + v} \right) = T\left( u \right) + T\left( v \right)\)
  2. \(T\left( {cu} \right) = cT\left( u \right)\)

Here,\(c\) is any scaler and \(u,v\) are vectors.

02

Check \(T\) is a linear transformation

(a)

Let there be two polynomials, \({\bf{p}}\left( t \right)\) and \({\bf{q}}\left( t \right)\) in \({{\rm P}_2}\), then their images will be \(T\left( {{\bf{p}}\left( t \right)} \right) = \left( {\begin{aligned}{{\bf{p}}\left( { - 3} \right)}\\{{\bf{p}}\left( { - 1} \right)}\\{{\bf{p}}\left( 1 \right)}\\{{\bf{p}}\left( 3 \right)}\end{aligned}} \right)\) and \(T\left( {{\bf{q}}\left( t \right)} \right) = \left( {\begin{aligned}{{\bf{q}}\left( { - 3} \right)}\\{{\bf{q}}\left( { - 1} \right)}\\{{\bf{q}}\left( 1 \right)}\\{{\bf{q}}\left( 3 \right)}\end{aligned}} \right)\) , respectively.

Check for the first property.

\(\begin{aligned}{c}T\left( {{\bf{p}}\left( t \right) + {\bf{q}}\left( t \right)} \right) &= \left( {\begin{aligned}{\left( {{\bf{p}} + {\bf{q}}} \right)\left( { - 3} \right)}\\{\left( {{\bf{p}} + {\bf{q}}} \right)\left( { - 1} \right)}\\{\left( {{\bf{p}} + {\bf{q}}} \right)\left( 1 \right)}\\{\left( {{\bf{p}} + {\bf{q}}} \right)\left( 3 \right)}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{\bf{p}}\left( { - 3} \right) + {\bf{q}}\left( { - 3} \right)}\\{{\bf{p}}\left( { - 1} \right) + {\bf{q}}\left( { - 1} \right)}\\{{\bf{p}}\left( 1 \right) + {\bf{q}}\left( 1 \right)}\\{{\bf{p}}\left( 3 \right) + {\bf{q}}\left( 3 \right)}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{\bf{p}}\left( { - 3} \right)}\\{{\bf{p}}\left( { - 1} \right)}\\{{\bf{p}}\left( 1 \right)}\\{{\bf{p}}\left( 3 \right)}\end{aligned}} \right) + \left( {\begin{aligned}{{\bf{q}}\left( { - 3} \right)}\\{{\bf{q}}\left( { - 1} \right)}\\{{\bf{q}}\left( 1 \right)}\\{{\bf{q}}\left( 3 \right)}\end{aligned}} \right)\\ &= T\left( {{\bf{p}}\left( t \right)} \right) + T\left( {{\bf{q}}\left( t \right)} \right)\end{aligned}\)

The first property is satisfied; check for the second property. Let \(c\) be any scaler.

\(\begin{aligned}T\left( {c \cdot {\bf{p}}\left( t \right)} \right) &= \left( {\begin{aligned}{\left( {c \cdot {\bf{p}}} \right)\left( { - 3} \right)}\\{\left( {c \cdot {\bf{p}}} \right)\left( { - 1} \right)}\\{\left( {c \cdot {\bf{p}}} \right)\left( 1 \right)}\\{\left( {c \cdot {\bf{p}}} \right)\left( 3 \right)}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{c \cdot \left( {{\bf{p}}\left( { - 3} \right)} \right)}\\{c \cdot \left( {{\bf{p}}\left( { - 1} \right)} \right)}\\{c \cdot \left( {{\bf{p}}\left( 1 \right)} \right)}\\{c \cdot \left( {{\bf{p}}\left( 3 \right)} \right)}\end{aligned}} \right)\\ &= c \cdot \left( {\begin{aligned}{{\bf{p}}\left( { - 3} \right)}\\{{\bf{p}}\left( { - 1} \right)}\\{{\bf{p}}\left( 1 \right)}\\{{\bf{p}}\left( 3 \right)}\end{aligned}} \right)\\ &= c \cdot T\left( {{\bf{p}}\left( t \right)} \right)\end{aligned}\)

As both the properties of a linear transformation are satisfied, \(T\) is a linear transformation.

03

The matrix for a linear transformation 

A matrix associated with a linear transformation. \(T\) for \(V\) and \(W\) is given by \({\left( {T\left( {\bf{x}} \right)} \right)_C} = \left( {\begin{aligned}{{{\left( {T\left( {{{\bf{b}}_1}} \right)} \right)}_C}}&{{{\left( {T\left( {{{\bf{b}}_2}} \right)} \right)}_C}}& \cdots &{{{\left( {T\left( {{{\bf{b}}_n}} \right)} \right)}_C}}\end{aligned}} \right)\), where \(V\) and \(W\) are \(n\) and \(m\)-dimensional subspaces respectively, and \(B\) and \(C\) are bases for \(V\), and\(W\).

04

Find the matrix for a linear transformation

(b)

Let \(B = \left\{ {1,t,{t^2},{t^3}} \right\}\) and the standard basis for \({\mathbb{R}^4}\) be \(\varepsilon = \left\{ {{{\bf{e}}_1},{{\bf{e}}_2},{{\bf{e}}_3},{{\bf{e}}_4}} \right\}\).

Write\(T\left( {{{\bf{b}}_1}} \right)\), \(T\left( {{{\bf{b}}_2}} \right)\), \(T\left( {{{\bf{b}}_3}} \right)\) and \(T\left( {{{\bf{b}}_4}} \right)\) for \(B = \left\{ {1,t,{t^2},{t^3}} \right\}\).

\(\begin{aligned}T\left( {{{\bf{b}}_1}} \right) &= T\left( 1 \right)\\ &= \left( {\begin{aligned}1\\1\\1\\1\end{aligned}} \right)\end{aligned}\)

\(\begin{aligned}T\left( {{{\bf{b}}_2}} \right) &= T\left( t \right)\\ &= \left( {\begin{aligned}{ - 3}\\{ - 1}\\1\\3\end{aligned}} \right)\end{aligned}\)

\(\begin{aligned}T\left( {{{\bf{b}}_3}} \right) &= T\left( {{t^2}} \right)\\ &= \left( {\begin{aligned}9\\1\\1\\9\end{aligned}} \right)\end{aligned}\)

\(\begin{aligned}T\left( {{{\bf{b}}_4}} \right) &= T\left( {{t^3}} \right)\\ &= \left( {\begin{aligned}{ - 27}\\{ - 1}\\1\\{27}\end{aligned}} \right)\end{aligned}\)

Find \({\left( {T\left( {{{\bf{b}}_1}} \right)} \right)_\varepsilon }\), \({\left( {T\left( {{{\bf{b}}_2}} \right)} \right)_\varepsilon }\), \({\left( {T\left( {{{\bf{b}}_3}} \right)} \right)_\varepsilon }\) and \({\left( {T\left( {{{\bf{b}}_4}} \right)} \right)_\varepsilon }\).

\({\left( {T\left( {{{\bf{b}}_1}} \right)} \right)_\varepsilon } = \left( {\begin{aligned}1\\1\\1\\1\end{aligned}} \right)\), \({\left( {T\left( {{{\bf{b}}_2}} \right)} \right)_C} = \left( {\begin{aligned}{ - 3}\\{ - 1}\\1\\3\end{aligned}} \right)\), \({\left( {T\left( {{{\bf{b}}_3}} \right)} \right)_C} = \left( {\begin{aligned}9\\1\\1\\9\end{aligned}} \right)\), \({\left( {T\left( {{{\bf{b}}_4}} \right)} \right)_\varepsilon } = \left( {\begin{aligned}{ - 27}\\{ - 1}\\1\\{27}\end{aligned}} \right)\)

Form a matrix\(T\) for the obtained vectors by using the formula \({\left( {T\left( {\bf{x}} \right)} \right)_C} = \left( {\begin{aligned}{{{\left( {T\left( {{{\bf{b}}_1}} \right)} \right)}_C}}&{{{\left( {T\left( {{{\bf{b}}_2}} \right)} \right)}_C}}& \cdots &{{{\left( {T\left( {{{\bf{b}}_n}} \right)} \right)}_C}}\end{aligned}} \right)\), where \(n = 3\).

\(\begin{aligned}{\left( {T\left( {\bf{x}} \right)} \right)_\varepsilon } = \left( {\begin{aligned}{{{\left( {T\left( {{{\bf{b}}_1}} \right)} \right)}_\varepsilon }}&{{{\left( {T\left( {{{\bf{b}}_2}} \right)} \right)}_\varepsilon }}&{{{\left( {T\left( {{{\bf{b}}_3}} \right)} \right)}_\varepsilon }}&{{{\left( {T\left( {{{\bf{b}}_4}} \right)} \right)}_\varepsilon }}\end{aligned}} \right)\\ = \left( {\begin{aligned}1&{}&{ - 3}&{}&9&{}&{ - 27}\\1&{}&{ - 1}&{}&1&{}&{ - 1}\\1&{}&1&{}&1&{}&1\\1&{}&3&{}&9&{}&{27}\end{aligned}} \right)\end{aligned}\)

So, the required matrix is \(\left( {\begin{aligned}1&{}&{ - 3}&{}&9&{}&{ - 27}\\1&{}&{ - 1}&{}&1&{}&{ - 1}\\1&{}&1&{}&1&{}&1\\1&{}&3&{}&9&{}&{27}\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

10. \(\left( {\begin{array}{*{20}{c}}{\bf{2}}&{\bf{3}}\\{\bf{4}}&{\bf{1}}\end{array}} \right)\)

Let \(A{\bf{ = }}\left( {\begin{aligned}{*{20}{c}}{{a_{{\bf{11}}}}}&{{a_{{\bf{12}}}}}\\{{a_{{\bf{21}}}}}&{{a_{{\bf{22}}}}}\end{aligned}} \right)\). Recall from Exercise \({\bf{25}}\) in Section \({\bf{5}}{\bf{.4}}\) that \({\rm{tr}}\;A\) (the trace of \(A\)) is the sum of the diagonal entries in \(A\). Show that the characteristic polynomial of \(A\) is \({\lambda ^2} - \left( {{\rm{tr}}A} \right)\lambda + \det A\). Then show that the eigenvalues of a \({\bf{2 \times 2}}\) matrix \(A\) are both real if and only if \(\det A \le {\left( {\frac{{{\rm{tr}}A}}{2}} \right)^2}\).

Question 20: Use a property of determinants to show that \(A\) and \({A^T}\) have the same characteristic polynomial.

Question 19: Let \(A\) be an \(n \times n\) matrix, and suppose A has \(n\) real eigenvalues, \({\lambda _1},...,{\lambda _n}\), repeated according to multiplicities, so that \(\det \left( {A - \lambda I} \right) = \left( {{\lambda _1} - \lambda } \right)\left( {{\lambda _2} - \lambda } \right) \ldots \left( {{\lambda _n} - \lambda } \right)\) . Explain why \(\det A\) is the product of the n eigenvalues of A. (This result is true for any square matrix when complex eigenvalues are considered.)

If \(p\left( t \right) = {c_0} + {c_1}t + {c_2}{t^2} + ...... + {c_n}{t^n}\), define \(p\left( A \right)\) to be the matrix formed by replacing each power of \(t\) in \(p\left( t \right)\)by the corresponding power of \(A\) (with \({A^0} = I\) ). That is,

\(p\left( t \right) = {c_0} + {c_1}I + {c_2}{I^2} + ...... + {c_n}{I^n}\)

Show that if \(\lambda \) is an eigenvalue of A, then one eigenvalue of \(p\left( A \right)\) is\(p\left( \lambda \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free