Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

9. \(\left( {\begin{array}{*{20}{c}}3&{ - 1}\\1&5\end{array}} \right)\)

Short Answer

Expert verified

The general solution is \({{\rm{v}}_1} = \left( {\begin{array}{*{20}{c}}{ - 1}\\1\end{array}} \right)\). Since we cannot generate an eigenvector basis for \({\mathbb{R}^2}\), \(A\) is not diagonalizable.

Step by step solution

01

Write the Diagonalization Theorem

The Diagonalization Theorem: An \(n \times n\) matrix \(A\) is diagonalizable if and only if \(A\) has \(n\) linearly independent eigenvectors. As \(A = PD{P^{ - 1}}\) which has \(D\) a diagonal matrix if and only if the columns of \(P\) are \(n\) linearly independent eigenvectors of \(A\).

02

Find eigenvalues of the matrix

Consider the given matrix \(A = \left( {\begin{array}{*{20}{c}}3&{ - 1}\\1&5\end{array}} \right)\). We need to diagonalize the given matrix if possible.

Write the characteristic equation:

\[\begin{array}{c}\det \left( {A - \lambda I} \right) = \det \left( {\left( {\begin{array}{*{20}{c}}3&{ - 1}\\1&5\end{array}} \right) - \lambda \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right)} \right)\\ = \det \left( {\left( {\begin{array}{*{20}{c}}{3 - \lambda }&{ - 1}\\1&{5 - \lambda }\end{array}} \right)} \right)\\ = \left( {3 - \lambda } \right)\left( {5 - \lambda } \right) - \left( { - 1} \right)\left( 1 \right)\\ = {\lambda ^2} - 8\lambda + 16\\ = {\left( {\lambda - 4} \right)^2}\end{array}\]

Therefore, \(\det \left( {A - \lambda I} \right) = {\left( {\lambda - 4} \right)^2}\).

03

Find the eigenvalues

\[\begin{array}{c}\det \left( {A - \lambda I} \right) = 0\\{\left( {\lambda - 4} \right)^2} = 0\\\lambda = 4,4\end{array}\]

So, the eigenvalue of the matrix is \(4\) with a multiplicity of \(2\).

04

Find the eigenvectors

\[\begin{array}{c}\left( {A - \lambda I} \right){\bf{x}} = 0\\\left( {\begin{array}{*{20}{c}}{3 - \lambda }&{ - 1}\\1&{5 - \lambda }\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}{3 - 4}&1\\1&{5 - 4}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}{ - 1}&{ - 1}\\1&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}{ - 1}&{ - 1}\\0&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right)\end{array}\]

Therefore, the eigenvectors are shown below:

\[ - {x_1} - {x_2} = 0\]

\[\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = k\left( {\begin{array}{*{20}{c}}{ - 1}\\1\end{array}} \right)\]

So, eigenvector is \({{\rm{v}}_1} = \left( {\begin{array}{*{20}{c}}{ - 1}\\1\end{array}} \right)\).

Since we cannot generate an eigenvector basis for \({\mathbb{R}^2}\), \(A\) is not diagonalizable.

Thus, the matrix is not-Diagonalizable.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \({\bf{u}}\) be an eigenvector of \(A\) corresponding to an eigenvalue \(\lambda \), and let \(H\) be the line in \({\mathbb{R}^{\bf{n}}}\) through \({\bf{u}}\) and the origin.

  1. Explain why \(H\) is invariant under \(A\) in the sense that \(A{\bf{x}}\) is in \(H\) whenever \({\bf{x}}\) is in \(H\).
  2. Let \(K\) be a one-dimensional subspace of \({\mathbb{R}^{\bf{n}}}\) that is invariant under \(A\). Explain why \(K\) contains an eigenvector of \(A\).

Question: In Exercises \({\bf{5}}\) and \({\bf{6}}\), the matrix \(A\) is factored in the form \(PD{P^{ - {\bf{1}}}}\). Use the Diagonalization Theorem to find the eigenvalues of \(A\) and a basis for each eigenspace.

6. \(\left( {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{0}}&{{\bf{ - 2}}}\\{\bf{2}}&{\bf{5}}&{\bf{4}}\\{\bf{0}}&{\bf{0}}&{\bf{5}}\end{array}} \right){\bf{ = }}\left( {\begin{array}{*{20}{c}}{{\bf{ - 2}}}&{\bf{0}}&{{\bf{ - 1}}}\\{\bf{0}}&{\bf{1}}&{\bf{2}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{5}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&4\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\bf{0}}&{\bf{0}}&{\bf{1}}\\{\bf{2}}&{\bf{1}}&{\bf{4}}\\{{\bf{ - 1}}}&{\bf{0}}&{{\bf{ - 2}}}\end{array}} \right)\)


For the matrix A,find real closed formulas for the trajectory xโ†’(t+1)=Axยฏ(t)wherexโ†’=[01]. Draw a rough sketchA=[-0.51.5-0.61.3]

Question: Exercises 9-14 require techniques section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for \(3 \times 3\) determinants described prior to Exercise 15-18 in Section 3.1. [Note: Finding the characteristic polynomial of a \(3 \times 3\) matrix is not easy to do with just row operations, because the variable \(\lambda \) is involved.

13. \(\left[ {\begin{array}{*{20}{c}}6&- 2&0\\- 2&9&0\\5&8&3\end{array}} \right]\)

Question: Is \(\left( {\begin{array}{*{20}{c}}1\\4\end{array}} \right)\) an eigenvalue of \(\left( {\begin{array}{*{20}{c}}{ - 3}&1\\{ - 3}&8\end{array}} \right)\)? If so, find the eigenvalue.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free