Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Exercises \({\bf{5}}\) and \({\bf{6}}\), the matrix \(A\) is factored in the form \(PD{P^{ - {\bf{1}}}}\). Use the Diagonalization Theorem to find the eigenvalues of \(A\) and a basis for each eigenspace.

6. \(\left( {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{0}}&{{\bf{ - 2}}}\\{\bf{2}}&{\bf{5}}&{\bf{4}}\\{\bf{0}}&{\bf{0}}&{\bf{5}}\end{array}} \right){\bf{ = }}\left( {\begin{array}{*{20}{c}}{{\bf{ - 2}}}&{\bf{0}}&{{\bf{ - 1}}}\\{\bf{0}}&{\bf{1}}&{\bf{2}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{5}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&4\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\bf{0}}&{\bf{0}}&{\bf{1}}\\{\bf{2}}&{\bf{1}}&{\bf{4}}\\{{\bf{ - 1}}}&{\bf{0}}&{{\bf{ - 2}}}\end{array}} \right)\)

Short Answer

Expert verified

The basis for eigenvalue \(\lambda = 5\)is \(\left( {\begin{array}{*{20}{c}}0\\1\\0\end{array}} \right)\)and \(\left( {\begin{array}{*{20}{c}}{ - 2}\\0\\1\end{array}} \right)\)and the basis for eigenvalue \(\lambda = 4\)is \(\left( {\begin{array}{*{20}{c}}{ - 1}\\2\\0\end{array}} \right)\).

Step by step solution

01

Write the Diagonalization Theorem

The Diagonalization Theorem:An \(n \times n\) matrix \(A\) is diagonalizable if and only if \(A\) has \(n\) linearly independent eigenvectors. As \(A = PD{P^{ - 1}}\) which has \(D\) a diagonal matrix if and only if the columns of \(P\) are \(n\) linearly independent eigenvectors of \(A\).

02

Find the inverse of the invertible matrix

Consider the given diagonalization matrix of \(A\) as \(A = \left( {\begin{array}{*{20}{c}}4&0&{ - 2}\\2&5&4\\0&0&5\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{ - 2}&0&{ - 1}\\0&1&2\\1&0&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}5&0&0\\0&5&0\\0&0&4\end{array}} \right)\left( {\begin{array}{*{20}{c}}0&0&1\\2&1&4\\{ - 1}&0&{ - 2}\end{array}} \right)\).

Compare diagonalization matrix of \(A\) with \(A = PD{P^{ - 1}}\).

\[\begin{array}{c}P = \left( {\begin{array}{*{20}{c}}{ - 2}&0&{ - 1}\\0&1&2\\1&0&0\end{array}} \right)\\D = \left( {\begin{array}{*{20}{c}}5&0&0\\0&5&0\\0&0&4\end{array}} \right)\\{P^{ - 1}} = \left( {\begin{array}{*{20}{c}}0&0&1\\2&1&4\\{ - 1}&0&{ - 2}\end{array}} \right)\end{array}\]

03

Find Eigenvalues and Eigenvectors

According to the diagonal entries of the matrix, \(D\) there are three eigenvalues.

\({\lambda _1} = 5\), \({\lambda _2} = 4\)and\({\lambda _3} = 5\)

The three eigenvectors are columns of the matrix \(P\).

\[{{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{ - 2}\\0\\1\end{array}} \right), {{\bf{v}}_2} = \left( {\begin{array}{*{20}{c}}0\\1\\0\end{array}} \right), {{\bf{v}}_3} = \left( {\begin{array}{*{20}{c}}{ - 1}\\2\\0\end{array}} \right)\]

Thus, the basis for eigenvalue \(\lambda = 5\) is \(\left( {\begin{array}{*{20}{c}}0\\1\\0\end{array}} \right)\) and \(\left( {\begin{array}{*{20}{c}}{ - 2}\\0\\1\end{array}} \right)\) and the basis for eigenvalue \(\lambda = 4\) is \(\left( {\begin{array}{*{20}{c}}{ - 1}\\2\\0\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let\(G = \left( {\begin{aligned}{*{20}{c}}A&X\\{\bf{0}}&B\end{aligned}} \right)\). Use formula\(\left( {\bf{1}} \right)\)for the determinant in section\({\bf{5}}{\bf{.2}}\)to explain why\(\det G = \left( {\det A} \right)\left( {\det B} \right)\). From this, deduce that the characteristic polynomial of\(G\)is the product of the characteristic polynomials of\(A\)and\(B\).

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

16. \(\left( {\begin{array}{*{20}{c}}{\bf{0}}&{{\bf{ - 4}}}&{{\bf{ - 6}}}\\{{\bf{ - 1}}}&{\bf{0}}&{{\bf{ - 3}}}\\{\bf{1}}&{\bf{2}}&{\bf{5}}\end{array}} \right)\)

For the Matrices A find real closed formulas for the trajectory xโ†’(t+1)=Axโ†’(t)where x(0)โ†’=[01]

A=[43-34]

Apply the results of Exercise \({\bf{15}}\) to find the eigenvalues of the matrices \(\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{2}}\\{\bf{2}}&{\bf{1}}&{\bf{2}}\\{\bf{2}}&{\bf{2}}&{\bf{1}}\end{aligned}} \right)\) and \(\left( {\begin{aligned}{*{20}{c}}{\bf{7}}&{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{7}}&{\bf{3}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{7}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{7}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{7}}\end{aligned}} \right)\).

For the Matrices A find real closed formulas for the trajectory xโ†’(t+1)=Axโ†’(t)wherexโ†’(0)=[01]A=[2-332]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free