Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises \({\bf{3}}\) and \({\bf{4}}\), use the factorization \(A = PD{P^{ - {\bf{1}}}}\) to compute \({A^k}\) where \(k\) represents an arbitrary positive integer.

4. \(\left( {\begin{array}{*{20}{c}}{ - 2}&{12}\\{ - 1}&5\end{array}} \right) = \left( {\begin{array}{*{20}{c}}3&4\\1&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}2&0\\0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - 1}&4\\1&{ - 3}\end{array}} \right)\)

Short Answer

Expert verified

The required answer is \({A^k} = \left( {\begin{array}{*{20}{c}}{4 - 3\left( {{2^k}} \right)}&{ - 12 + 3\left( {{2^{k + 2}}} \right)}\\{1 - {2^k}}&{ - 3 + {2^{k + 2}}}\end{array}} \right)\).

Step by step solution

01

Write the Diagonalization Theorem

The Diagonalization Theorem:An \(n \times n\) matrix \(A\) is diagonalizable if and only if \(A\) has \(n\) linearly independent eigenvectors. As \(A = PD{P^{ - 1}}\) which has \(D\) a diagonal matrix if and only if the columns of \(P\) are \(n\) linearly independent eigenvectors of \(A\).

02

Find the inverse of the invertible matrix

Consider the given equation form \(\left( {\begin{array}{*{20}{c}}{ - 2}&{12}\\{ - 1}&5\end{array}} \right) = \left( {\begin{array}{*{20}{c}}3&4\\1&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}2&0\\0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - 1}&4\\1&{ - 3}\end{array}} \right)\).

As it is given that \(A = PD{P^{ - 1}}\)than by using the formula for \({n^{th}}\) power we get:

\({A^n} = P{D^n}{P^{ - 1}}\).

Compare the given equation form with \(A = PD{P^{ - 1}}\).

\[\left( {\begin{array}{*{20}{c}}{ - 2}&{12}\\{ - 1}&5\end{array}} \right) = \left( {\begin{array}{*{20}{c}}3&4\\1&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}2&0\\0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - 1}&4\\1&{ - 3}\end{array}} \right)\]

Therefore,

\[\begin{array}{c}A = \left( {\begin{array}{*{20}{c}}{ - 2}&{12}\\{ - 1}&5\end{array}} \right)\\P = \left( {\begin{array}{*{20}{c}}3&4\\1&1\end{array}} \right)\\D = \left( {\begin{array}{*{20}{c}}2&0\\0&1\end{array}} \right)\\{P^{ - 1}} = \left( {\begin{array}{*{20}{c}}{ - 1}&4\\1&{ - 3}\end{array}} \right)\end{array}\]

03

Find \({A^k}\)

\[\begin{array}{c}{A^k} = P{D^k}{P^{ - 1}}\\ = \left( {\begin{array}{*{20}{c}}3&4\\1&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{2^k}}&0\\0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - 1}&4\\1&{ - 3}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{3\left( {{2^k}} \right) + 0}&{0 + 4}\\{{2^k} + 0}&{0 + 1}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - 1}&{ - 3}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{3\left( {{2^k}} \right)}&4\\{{2^k}}&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - 1}&4\\1&{ - 3}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - 3\left( {{2^k}} \right) + 4}&{3\left( {{2^k}} \right)\left( 4 \right) - 12}\\{ - {2^k} + 1}&{4\left( {{2^k}} \right) - 3}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{4 - 3\left( {{2^k}} \right)}&{ - 12 + 3\left( {{2^{k + 2}}} \right)}\\{1 - {2^k}}&{ - 3 + {2^{k + 2}}}\end{array}} \right)\end{array}\]

Thus, \({A^k} = \left( {\begin{array}{*{20}{c}}{4 - 3\left( {{2^k}} \right)}&{ - 12 + 3\left( {{2^{k + 2}}} \right)}\\{1 - {2^k}}&{ - 3 + {2^{k + 2}}}\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show that \(I - A\) is invertible when all the eigenvalues of \(A\) are less than 1 in magnitude. (Hint: What would be true if \(I - A\) were not invertible?)

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

7. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{6}}&{{\bf{ - 1}}}\end{array}} \right)\)

(M)The MATLAB command roots\(\left( p \right)\) computes the roots of the polynomial equation \(p\left( t \right) = {\bf{0}}\). Read a MATLAB manual, and then describe the basic idea behind the algorithm for the roots command.


For the matrix A,find real closed formulas for the trajectory xโ†’(t+1)=Axยฏ(t)wherexโ†’=[01]. Draw a rough sketchA=[-0.51.5-0.61.3]

A particle moving in a planar force field has a position vector .\(x\). that satisfies \(x' = Ax\). The \(2 \times 2\) matrix \(A\) has eigenvalues 4 and 2, with corresponding eigenvectors \({v_1} = \left( {\begin{aligned}{{20}{c}}{ - 3}\\1\end{aligned}} \right)\) and \({v_2} = \left( {\begin{aligned}{{20}{c}}{ - 1}\\1\end{aligned}} \right)\). Find the position of the particle at a time \(t\), assuming that \(x\left( 0 \right) = \left( {\begin{aligned}{{20}{c}}{ - 6}\\1\end{aligned}} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free