Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Exercises \({\bf{3}}\) and \({\bf{4}}\), use the factorization \(A = PD{P^{ - {\bf{1}}}}\) to compute \({A^k}\) where \(k\) represents an arbitrary positive integer.

3. \(\left( {\begin{array}{*{20}{c}}a&0\\{3\left( {a - b} \right)}&b\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0\\3&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}a&0\\0&b\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\{ - 3}&1\end{array}} \right)\)

Short Answer

Expert verified

The required value is \({A^k} = \left( {\begin{array}{*{20}{c}}{{a^k}}&0\\{3{a^k} - 3{b^k}}&{{b^k}}\end{array}} \right)\).

Step by step solution

01

Write the Diagonalization Theorem

The Diagonalization Theorem: An \(n \times n\) matrix \(A\) is diagonalizable if and only if \(A\) has \(n\) linearly independent eigenvectors. As \(A = PD{P^{ - 1}}\) which has \(D\) a diagonal matrix if and only if the columns of \(P\) are \(n\) linearly independent eigenvectors of \(A\).

02

Find the inverse of the invertible matrix

Consider the given equation form \(\left( {\begin{array}{*{20}{c}}a&0\\{3\left( {a - b} \right)}&b\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0\\3&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}a&0\\0&b\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\{ - 3}&1\end{array}} \right)\).

As it is given that \(A = PD{P^{ - 1}}\)than by using the formula for \({n^{th}}\) power we get:

\({A^n} = P{D^n}{P^{ - 1}}\).

Compare the given equation form with \(A = PD{P^{ - 1}}\).

\[\left( {\begin{array}{*{20}{c}}a&0\\{3\left( {a - b} \right)}&b\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0\\3&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}a&0\\0&b\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\{ - 3}&1\end{array}} \right)\]

Therefore,

\[\begin{array}{c}A = \left( {\begin{array}{*{20}{c}}a&0\\{3\left( {a - b} \right)}&b\end{array}} \right)\\P = \left( {\begin{array}{*{20}{c}}1&0\\3&1\end{array}} \right)\\D = \left( {\begin{array}{*{20}{c}}a&0\\0&b\end{array}} \right)\\{P^{ - 1}} = \left( {\begin{array}{*{20}{c}}1&0\\{ - 3}&1\end{array}} \right)\end{array}\]

03

Find \({A^k}\)

\[\begin{array}{c}{A^k} = P{D^k}{P^{ - 1}}\\ = \left( {\begin{array}{*{20}{c}}1&0\\3&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{a^k}}&0\\0&{{b^k}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\{ - 3}&1\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{{a^k}}&0\\{3{a^k}}&{{b^k}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\{ - 3}&1\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{{a^k}}&0\\{3{a^k} - 3{b^k}}&{{b^k}}\end{array}} \right)\end{array}\]

Thus, \({A^k} = \left( {\begin{array}{*{20}{c}}{{a^k}}&0\\{3{a^k} - 3{b^k}}&{{b^k}}\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider an invertible n × n matrix A such that the zero state is a stable equilibrium of the dynamical system x(t+1)=Ax(t)What can you say about the stability of the systems

x(t+1)=-Ax(t)

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

9. \(\left( {\begin{array}{*{20}{c}}3&{ - 1}\\1&5\end{array}} \right)\)

Question 20: Use a property of determinants to show that \(A\) and \({A^T}\) have the same characteristic polynomial.

Let\(D = \left\{ {{{\bf{d}}_1},{{\bf{d}}_2}} \right\}\) and \(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2}} \right\}\) be bases for vector space \(V\) and \(W\), respectively. Let \(T:V \to W\) be a linear transformation with the property that

\(T\left( {{{\bf{d}}_1}} \right) = 2{{\bf{b}}_1} - 3{{\bf{b}}_2}\), \(T\left( {{{\bf{d}}_2}} \right) = - 4{{\bf{b}}_1} + 5{{\bf{b}}_2}\)

Find the matrix for \(T\) relative to \(D\), and\(B\).

Question: In Exercises 21 and 22, \(A\) and \(B\) are \(n \times n\) matrices. Mark each statement True or False. Justify each answer.

  1. The determinant of \(A\) is the product of the diagonal entries in \(A\).
  2. An elementary row operation on \(A\) does not change the determinant.
  3. \(\left( {\det A} \right)\left( {\det B} \right) = \det AB\)
  4. If \(\lambda + 5\) is a factor of the characteristic polynomial of \(A\), then 5 is an eigenvalue of \(A\).
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free