Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Diagonalize the matrices in Exercises 33-36. Use your matrix program’s eigenvalue command to find the eigenvalues, and then compute bases for the eigenspaces as in section 5.1.

35. \(\left[ {\begin{array}{*{20}{c}}{{\bf{11}}}&{ - {\bf{6}}}&{\bf{4}}&{ - {\bf{10}}}&{ - {\bf{4}}}\\{ - {\bf{3}}}&{\bf{5}}&{ - {\bf{2}}}&{\bf{4}}&{\bf{1}}\\{ - {\bf{8}}}&{{\bf{12}}}&{ - {\bf{3}}}&{{\bf{12}}}&{\bf{4}}\\{\bf{1}}&{\bf{6}}&{ - {\bf{2}}}&{\bf{3}}&{ - {\bf{1}}}\\{\bf{8}}&{ - {\bf{18}}}&{\bf{8}}&{ - {\bf{14}}}&{ - {\bf{1}}}\end{array}} \right]\)

Short Answer

Expert verified

The diagonal form of the given matrix is \(\left[ {\begin{array}{*{20}{c}}5&0&0&0&0\\0&5&0&0&0\\0&0&1&0&0\\0&0&0&1&0\\0&0&0&0&3\end{array}} \right]\).

Step by step solution

01

Find the eigenvalues

Let,

\[A = \left[ {\begin{array}{*{20}{c}}{11}&{ - 6}&4&{ - 10}&{ - 4}\\{ - 3}&5&{ - 2}&4&1\\{ - 8}&{12}&{ - 3}&{12}&4\\1&6&{ - 2}&3&{ - 1}\\8&{ - 18}&8&{ - 14}&{ - 1}\end{array}} \right]\]

Use the following code in MATLAB to find the eigenvalues of the matrix.

\[\begin{array}{l} > > A = \left[ \begin{array}{l}\begin{array}{*{20}{c}}{11}&{ - 6}&4&{ - 10}&{ - 4;\,}\end{array}\,\begin{array}{*{20}{c}}{ - 3}&5&{ - 2}&4&{1;\,}\end{array}\,\begin{array}{*{20}{c}}{ - 8}&{12}&{ - 3}&{12}&{4;\,\,}\end{array}\,\\\begin{array}{*{20}{c}}1&6&{ - 2}&3&{ - 1;\,}\end{array}\begin{array}{*{20}{c}}8&{ - 18}&8&{ - 14}&{ - 1}\end{array}\end{array} \right];\\ > > {\rm{ev}} = eigs\left( A \right);\end{array}\]

So, the eigenvalues of A are:

\(ev = \left( {5,\,1,\,3,\,5,1} \right)\)

02

Find eigenvectors of A

Find the eigenvalues of A using the following MATLAB code:

\({\rm{ > > nulbasis}}\left( {A - {\rm{ev}}\left( 1 \right) * {\rm{eye}}\left( 5 \right)} \right);\)

So, the eigenvector for \(\lambda = 5\) is:

\({{\bf{v}}_1} = \left[ {\begin{array}{*{20}{c}}{2.0000}\\{ - 0.3333}\\{ - 1.0000}\\{1.0000}\\0\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}{1.0000}\\{ - 0.3333}\\{ - 1.0000}\\0\\{1.0000}\end{array}} \right]\)

The basis of the eigenspace of \(\lambda = 5\) is \(\left[ {\begin{array}{*{20}{c}}6\\{ - 1}\\{ - 3}\\3\\0\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}3\\{ - 1}\\{ - 3}\\0\\3\end{array}} \right]\).

\({\rm{ > > nulbasis}}\left( {A - {\rm{ev}}\left( 2 \right) * {\rm{eye}}\left( 5 \right)} \right);\)

So, the eigenvector for \(\lambda = 1\) is:

The basis of the eigenspace of \(\lambda = 1\) is \(\left[ {\begin{array}{*{20}{c}}4\\{ - 3}\\{ - 2}\\5\\0\end{array}} \right],\,\left[ {\begin{array}{*{20}{c}}3\\{ - 1}\\{ - 4}\\0\\5\end{array}} \right]\).

\({\rm{ > > nulbasis}}\left( {A - {\rm{ev}}\left( 3 \right) * {\rm{eye}}\left( 5 \right)} \right);\)

So, the eigenvector for \(\lambda = 3\) is:

\({{\bf{v}}_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{0.5000}\\{ - 0.2500}\\{ - 1.0000}\\{ - 0.2500}\\{1.0000}\end{array}} \right]\)

The basis of the eigenspace of \(\lambda = 3\) is \(\left[ {\begin{array}{*{20}{c}}2\\{ - 1}\\{ - 4}\\{ - 1}\\4\end{array}} \right]\).

03

Write the matrix invertible matrix P and its diagonalized form

The invertible matrix P can be written as,

\(P = \left[ {\begin{array}{*{20}{c}}6&3&4&3&2\\{ - 1}&{ - 1}&{ - 3}&{ - 1}&{ - 1}\\{ - 3}&{ - 3}&{ - 2}&{ - 4}&{ - 4}\\3&0&5&0&{ - 1}\\0&3&0&5&4\end{array}} \right]\)

The diagonalized form can be written as,

\(D = \left[ {\begin{array}{*{20}{c}}5&0&0&0&0\\0&5&0&0&0\\0&0&1&0&0\\0&0&0&1&0\\0&0&0&0&3\end{array}} \right]\)

So, the diagonal form of the given matrix is \(\left[ {\begin{array}{*{20}{c}}5&0&0&0&0\\0&5&0&0&0\\0&0&1&0&0\\0&0&0&1&0\\0&0&0&0&3\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: For the matrices in Exercises 15-17, list the eigenvalues, repeated according to their multiplicities.

15. \(\left[ {\begin{array}{*{20}{c}}4&- 7&0&2\\0&3&- 4&6\\0&0&3&{ - 8}\\0&0&0&1\end{array}} \right]\)

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

20. Let \(p\left( t \right){\bf{ = }}\left( {t{\bf{ - 2}}} \right)\left( {t{\bf{ - 3}}} \right)\left( {t{\bf{ - 4}}} \right){\bf{ = - 24 + 26}}t{\bf{ - 9}}{t^{\bf{2}}}{\bf{ + }}{t^{\bf{3}}}\). Write the companion matrix for \(p\left( t \right)\), and use techniques from chapter \({\bf{3}}\) to find the characteristic polynomial.

Question: Let \(A = \left( {\begin{array}{*{20}{c}}{.6}&{.3}\\{.4}&{.7}\end{array}} \right)\), \({v_1} = \left( {\begin{array}{*{20}{c}}{3/7}\\{4/7}\end{array}} \right)\), \({x_0} = \left( {\begin{array}{*{20}{c}}{.5}\\{.5}\end{array}} \right)\). (Note: \(A\) is the stochastic matrix studied in Example 5 of Section 4.9.)

  1. Find a basic for \({\mathbb{R}^2}\) consisting of \({{\rm{v}}_1}\) and anther eigenvector \({{\rm{v}}_2}\) of \(A\).
  2. Verify that \({{\rm{x}}_0}\) may be written in the form \({{\rm{x}}_0} = {{\rm{v}}_1} + c{{\rm{v}}_2}\).
  3. For \(k = 1,2, \ldots \), define \({x_k} = {A^k}{x_0}\). Compute \({x_1}\) and \({x_2}\), and write a formula for \({x_k}\). Then show that \({{\bf{x}}_k} \to {{\bf{v}}_1}\) as \(k\) increases.

Let \({\bf{u}}\) be an eigenvector of \(A\) corresponding to an eigenvalue \(\lambda \), and let \(H\) be the line in \({\mathbb{R}^{\bf{n}}}\) through \({\bf{u}}\) and the origin.

  1. Explain why \(H\) is invariant under \(A\) in the sense that \(A{\bf{x}}\) is in \(H\) whenever \({\bf{x}}\) is in \(H\).
  2. Let \(K\) be a one-dimensional subspace of \({\mathbb{R}^{\bf{n}}}\) that is invariant under \(A\). Explain why \(K\) contains an eigenvector of \(A\).

Question 18: It can be shown that the algebraic multiplicity of an eigenvalue \(\lambda \) is always greater than or equal to the dimension of the eigenspace corresponding to \(\lambda \). Find \(h\) in the matrix \(A\) below such that the eigenspace for \(\lambda = 5\) is two-dimensional:

\[A = \left[ {\begin{array}{*{20}{c}}5&{ - 2}&6&{ - 1}\\0&3&h&0\\0&0&5&4\\0&0&0&1\end{array}} \right]\]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free