Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: A factorization \(A = PD{P^{ - {\bf{1}}}}\) is not unique. Demonstrate this for the matrix A in Example 2. With \({D_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}&{\bf{0}}\\{\bf{0}}&{\bf{5}}\end{array}} \right]\), use the information in Example 2 to find the matrix \({P_{\bf{1}}}\) such that \(A = {P_{\bf{1}}}{D_{\bf{1}}}P_{\bf{1}}^{ - {\bf{1}}}\).

Short Answer

Expert verified

The matrix \({P_1}\) is \(\left[ {\begin{array}{*{20}{c}}1&1\\{ - 2}&{ - 1}\end{array}} \right]\).

Step by step solution

01

Write the information given

The matrices from example 2 are,

\[A = \left[ {\begin{array}{*{20}{c}}7&2\\{ - 4}&1\end{array}} \right], P = \left[ {\begin{array}{*{20}{c}}1&1\\{ - 1}&{ - 2}\end{array}} \right], D = \left[ {\begin{array}{*{20}{c}}5&0\\0&3\end{array}} \right]\]

02

Find the matrix \({P_{\bf{1}}}\)

For eigenvalue 5, the eigenvector is \(\left[ {\begin{array}{*{20}{c}}1\\{ - 1}\end{array}} \right]\) and for eigenvalue 3, the eigenvector is \(\left[ {\begin{array}{*{20}{c}}1\\{ - 2}\end{array}} \right]\).

The matrix \({P_1}\) is such that \(A = {P_1}{D_1}P_1^{ - 1}\), so the matrix \({D_1}\) is:

\[{D_1} = \left[ {\begin{array}{*{20}{c}}3&0\\0&5\end{array}} \right]\]

Interchange the columns of P to find the matrix \({P_1}\).

\[{P_1} = \left[ {\begin{array}{*{20}{c}}1&1\\{ - 2}&{ - 1}\end{array}} \right]\]

03

Find the product \({P_{\bf{1}}}{D_{\bf{1}}}P_{\bf{1}}^{ - {\bf{1}}}\)

The product \({P_1}{D_1}P_1^{ - 1}\) can be calculated as follows:

\[\begin{array}{c}{P_1}{D_1}P_1^{ - 1} = \left[ {\begin{array}{*{20}{c}}1&1\\{ - 2}&{ - 1}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}3&0\\0&5\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{ - 1}&{ - 1}\\2&1\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}7&2\\{ - 4}&1\end{array}} \right]\\ = A\end{array}\]

So, the matrix \({P_1}\) is \(\left[ {\begin{array}{*{20}{c}}1&1\\{ - 2}&{ - 1}\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Let \(A = \left( {\begin{array}{*{20}{c}}{.6}&{.3}\\{.4}&{.7}\end{array}} \right)\), \({v_1} = \left( {\begin{array}{*{20}{c}}{3/7}\\{4/7}\end{array}} \right)\), \({x_0} = \left( {\begin{array}{*{20}{c}}{.5}\\{.5}\end{array}} \right)\). (Note: \(A\) is the stochastic matrix studied in Example 5 of Section 4.9.)

  1. Find a basic for \({\mathbb{R}^2}\) consisting of \({{\rm{v}}_1}\) and anther eigenvector \({{\rm{v}}_2}\) of \(A\).
  2. Verify that \({{\rm{x}}_0}\) may be written in the form \({{\rm{x}}_0} = {{\rm{v}}_1} + c{{\rm{v}}_2}\).
  3. For \(k = 1,2, \ldots \), define \({x_k} = {A^k}{x_0}\). Compute \({x_1}\) and \({x_2}\), and write a formula for \({x_k}\). Then show that \({{\bf{x}}_k} \to {{\bf{v}}_1}\) as \(k\) increases.

Question: Construct a random integer-valued \(4 \times 4\) matrix \(A\), and verify that \(A\) and \({A^T}\) have the same characteristic polynomial (the same eigenvalues with the same multiplicities). Do \(A\) and \({A^T}\) have the same eigenvectors? Make the same analysis of a \(5 \times 5\) matrix. Report the matrices and your conclusions.

[M]Repeat Exercise 25 for \[A{\bf{ = }}\left[ {\begin{array}{*{20}{c}}{{\bf{ - 8}}}&{\bf{5}}&{{\bf{ - 2}}}&{\bf{0}}\\{{\bf{ - 5}}}&{\bf{2}}&{\bf{1}}&{{\bf{ - 2}}}\\{{\bf{10}}}&{{\bf{ - 8}}}&{\bf{6}}&{{\bf{ - 3}}}\\{\bf{3}}&{{\bf{ - 2}}}&{\bf{1}}&{\bf{0}}\end{array}} \right]\].

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{array}{*{20}{c}}4\\6\end{array}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{array}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{array}{*{20}{c}}6\\{ - 2}\\3\end{array}} \right)\)

3. \(\frac{1}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{\mathop{\rm w}\nolimits} \)

In Exercises 9โ€“16, find a basis for the eigenspace corresponding to each listed eigenvalue.

10. \(A = \left( {\begin{array}{*{20}{c}}{10}&{ - 9}\\4&{ - 2}\end{array}} \right)\), \(\lambda = 4\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free