Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: A is a \({\bf{4}} \times {\bf{4}}\) matrix with three eigenvalues. One eigenspace is one-dimensional and one of the other eigenspaces is two-dimensional. Is it possible that A is not diagonalizable? Justify your answer.

Short Answer

Expert verified

According to diagonalize theorem, matrix A of order \(4 \times 4\) is diagonalizable.

Step by step solution

01

Write the given information

Matrix A is of the order \(4 \times 4\) that has 3 eigenvalues and one eigenspace is one-dimensional and one of the other eigenspaces is two-dimensional.

02

Find that A is diagonalizable

Consider \(\left\{ {{{\bf{v}}_1}} \right\}\) is the basis of one-dimensional space, \({{\bf{v}}_2}\) and \({{\bf{v}}_3}\) are the basis of two-dimensional space, and let \({{\bf{v}}_4}\) be an eigenvector in the remaining eigenspace.

As per theorem 7, all the eigenvectors are linearly independent.

Therefore, according to diagonalize theorem, matrix A of order \(4 \times 4\) is diagonalizable.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises \({\bf{3}}\) and \({\bf{4}}\), use the factorization \(A = PD{P^{ - {\bf{1}}}}\) to compute \({A^k}\) where \(k\) represents an arbitrary positive integer.

4. \(\left( {\begin{array}{*{20}{c}}{ - 2}&{12}\\{ - 1}&5\end{array}} \right) = \left( {\begin{array}{*{20}{c}}3&4\\1&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}2&0\\0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - 1}&4\\1&{ - 3}\end{array}} \right)\)

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

5. \(\left[ {\begin{array}{*{20}{c}}2&1\\-1&4\end{array}} \right]\)

[M]Repeat Exercise 25 for \[A{\bf{ = }}\left[ {\begin{array}{*{20}{c}}{{\bf{ - 8}}}&{\bf{5}}&{{\bf{ - 2}}}&{\bf{0}}\\{{\bf{ - 5}}}&{\bf{2}}&{\bf{1}}&{{\bf{ - 2}}}\\{{\bf{10}}}&{{\bf{ - 8}}}&{\bf{6}}&{{\bf{ - 3}}}\\{\bf{3}}&{{\bf{ - 2}}}&{\bf{1}}&{\bf{0}}\end{array}} \right]\].

Question: Construct a random integer-valued \(4 \times 4\) matrix \(A\), and verify that \(A\) and \({A^T}\) have the same characteristic polynomial (the same eigenvalues with the same multiplicities). Do \(A\) and \({A^T}\) have the same eigenvectors? Make the same analysis of a \(5 \times 5\) matrix. Report the matrices and your conclusions.

Question: Exercises 9-14 require techniques section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for \(3 \times 3\) determinants described prior to Exercise 15-18 in Section 3.1. [Note: Finding the characteristic polynomial of a \(3 \times 3\) matrix is not easy to do with just row operations, because the variable \(\lambda \) is involved.

13. \(\left[ {\begin{array}{*{20}{c}}6&- 2&0\\- 2&9&0\\5&8&3\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free