Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Exercises 21 and 22, A, B, Pand Dare \(n \times n\) matrices. Mark each statement True or False. Justify each answer.(Study Theorem 5 and 6 and the examples in this section carefully before you try these exercises.)

22.

a. A is diagonalizable if A has neigenvectos.

b. If A is diagonizable, then A has n eigenvalues.

c. If\(AP = PD\), with D diagonal, then the nonzero columns of P must be eigenvectors of A.

d. If A is invertible, then A is diagonizable.

Short Answer

Expert verified

a. The given statement is False.

b. The given statement is False.

c. The given statement is True.

d. The given statement is False.

Step by step solution

01

Find an answer for part (a)

According to the diagonalization theorem, the n eigenvectors must be linearly independent.

Therefore, the given statement is False.

02

Find an answer for part (b)

According to theorem 6, If a \(n \times n\) matrix with \(n\) distinct eigenvalues is diagonalizable.

The given is the converse of Theorem 6.

Therefore, the given statement is False.

03

Find an answer for part (c)

According to a diagonalizable theorem, if\(AP = PD\)then,\(A = PD{P^{ - 1}}\)and D must be a diagonal matrix.The previous statement will be true if columns of P are linearly independent eigenvectors of matrix A.

The diagonal elements of D represent the eigenvalues of A.

Therefore, the given statement is True.

04

Find an answer for part (d)

For a matrix to be invertible, its columns must be linearly independent and for a matrix to be diagonalizable, it must have n linearly independent vectors.

Therefore, the given statement is False.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

19. Write the companion matrix \({C_p}\) for \(p\left( t \right) = {\bf{6}} - {\bf{5}}t + {t^{\bf{2}}}\), and then find the characteristic polynomial of \({C_p}\).

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

4. \(\left[ {\begin{array}{*{20}{c}}5&-3\\-4&3\end{array}} \right]\)

Define\(T:{{\rm P}_3} \to {\mathbb{R}^4}\)by\(T\left( {\bf{p}} \right) = \left( {\begin{aligned}{{\bf{p}}\left( { - 3} \right)}\\{{\bf{p}}\left( { - 1} \right)}\\{{\bf{p}}\left( 1 \right)}\\{{\bf{p}}\left( 3 \right)}\end{aligned}} \right)\).

  1. Show that \(T\) is a linear transformation.
  2. Find the matrix for \(T\) relative to the basis \(\left\{ {1,t,{t^2},{t^3}} \right\}\)for \({{\rm P}_3}\)and the standard basis for \({\mathbb{R}^4}\).

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

20. Let \(p\left( t \right){\bf{ = }}\left( {t{\bf{ - 2}}} \right)\left( {t{\bf{ - 3}}} \right)\left( {t{\bf{ - 4}}} \right){\bf{ = - 24 + 26}}t{\bf{ - 9}}{t^{\bf{2}}}{\bf{ + }}{t^{\bf{3}}}\). Write the companion matrix for \(p\left( t \right)\), and use techniques from chapter \({\bf{3}}\) to find the characteristic polynomial.

For the matrices Afind real closed formulas for the trajectoryx(t+1)=Ax(t)wherex(0)=[01]. Draw a rough sketchA=[1-31.2-2.6]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free