Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

20. \(\left( {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{4}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{2}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{2}}\end{array}} \right)\)

Short Answer

Expert verified

The matrix \(A\) is diagonalizable with \(P = \left( {\begin{array}{*{20}{c}}0&2&0&0\\1&0&0&0\\0&0&1&0\\0&1&0&1\end{array}} \right)\) and \(D = \left( {\begin{array}{*{20}{c}}4&0&0&0\\0&4&0&0\\0&0&2&0\\0&0&0&2\end{array}} \right)\).

Step by step solution

01

Write the Diagonalization Theorem

The Diagonalization Theorem: An \(n \times n\) matrix \(A\) is diagonalizable if and only if \(A\) has \(n\) linearly independent eigenvectors. As \(A = PD{P^{ - 1}}\) which has \(D\) a diagonal matrix if and only if the columns of \(P\) are \(n\) linearly independent eigenvectors of \(A\).

02

Find eigenvalues of the matrix

Consider the given matrix \(A = \left( {\begin{array}{*{20}{c}}4&0&0&0\\0&4&0&0\\0&0&2&0\\1&0&0&2\end{array}} \right)\). Since it is given the eigenvalues of the matrix are \(4\), \(4\), \(2\) and \(2\).

03

Find the eigenvector for \(\lambda   = 4\)

Write the matrix form for finding the eigenvector.

\(\begin{array}{c}A - 4I = \left( {\begin{array}{*{20}{c}}0&0&0&0\\0&0&0&0\\0&0&{ - 2}&0\\1&0&0&{ - 2}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1&0&0&{ - 2}&0\\0&0&{ - 2}&0&0\\0&0&0&0&0\\0&0&0&0&0\end{array}} \right)\;\left\{ \begin{array}{l}{R_1} \leftrightarrow {R_4}\\{R_2} \leftrightarrow {R_3}\end{array} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0&0&{ - 2}&0\\0&0&1&0&0\\0&0&0&0&0\\0&0&0&0&0\end{array}} \right)\;\left\{ {{R_2} = - \frac{{{R_2}}}{2}} \right\}\end{array}\)

The general solution is,

\(\left\{ {{{\rm{v}}_1},{{\rm{v}}_2}} \right\} = \left\{ {\left( {\begin{array}{*{20}{c}}0\\1\\0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}2\\0\\0\\1\end{array}} \right)} \right\}\).

Therefore, the eigenvectors are \(\left\{ {{{\rm{v}}_1},{{\rm{v}}_2}} \right\} = \left\{ {\left( {\begin{array}{*{20}{c}}0\\1\\0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}2\\0\\0\\1\end{array}} \right)} \right\}\).

04

Find the Eigenvector for \(\lambda   = {\bf{2}}\)

Write the matrix form for finding the eigenvector.

\(\begin{array}{c}A - 2I = \left( {\begin{array}{*{20}{c}}2&0&0&0\\0&2&0&0\\0&0&0&0\\1&0&0&0\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1&0&0&0&0\\0&1&0&0&0\\0&0&0&0&0\\1&0&0&0&0\end{array}} \right)\;\left\{ \begin{array}{l}{R_1} \to \frac{{{R_1}}}{2}\\{R_2} \to \frac{{{R_2}}}{2}\end{array} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0&0&0&0\\0&1&0&0&0\\0&0&0&0&0\\0&0&0&0&0\end{array}} \right)\;\left\{ {{R_4} = {R_4} - {R_1}} \right\}\end{array}\)

The general solution is,

\(\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\1\\0\end{array}} \right){x_3} + \left( {\begin{array}{*{20}{c}}0\\0\\0\\1\end{array}} \right){x_4}\).

Therefore, the eigenvectors are \(\left\{ {{{\rm{v}}_3},{{\rm{v}}_4}} \right\} = \left\{ {\left( {\begin{array}{*{20}{c}}0\\0\\1\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\0\\0\\1\end{array}} \right)} \right\}\).

05

Find the matrix \(P\) and \(D\)

The matrix\(P\)is formed by eigenvectors

\(P = \left( {\begin{array}{*{20}{c}}0&2&0&0\\1&0&0&0\\0&0&1&0\\0&1&0&1\end{array}} \right)\)

The matrix\(D\)is formed by eigenvalues.

\(D = \left( {\begin{array}{*{20}{c}}4&0&0&0\\0&4&0&0\\0&0&2&0\\0&0&0&2\end{array}} \right)\)

Thus, the matrix \(A\) is diagonalizable with \(P = \left( {\begin{array}{*{20}{c}}0&2&0&0\\1&0&0&0\\0&0&1&0\\0&1&0&1\end{array}} \right)\) and \(D = \left( {\begin{array}{*{20}{c}}4&0&0&0\\0&4&0&0\\0&0&2&0\\0&0&0&2\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let\(B = \left\{ {{{\bf{b}}_{\bf{1}}},{{\bf{b}}_{\bf{2}}},{{\bf{b}}_{\bf{3}}}} \right\}\) and \(D = \left\{ {{{\bf{d}}_{\bf{1}}},{{\bf{d}}_{\bf{2}}}} \right\}\) be bases for vector space \(V\) and \(W\), respectively. Let \(T:V \to W\) be a linear transformation with the property that

\(T\left( {{{\bf{b}}_1}} \right) = 3{{\bf{d}}_1} - 5{{\bf{d}}_2}\), \(T\left( {{{\bf{b}}_2}} \right) = - {{\bf{d}}_1} + 6{{\bf{d}}_2}\), \(T\left( {{{\bf{b}}_3}} \right) = 4{{\bf{d}}_2}\)

Find the matrix for \(T\) relative to \(B\), and\(D\).

Question: Let \(A = \left( {\begin{array}{*{20}{c}}{.6}&{.3}\\{.4}&{.7}\end{array}} \right)\), \({v_1} = \left( {\begin{array}{*{20}{c}}{3/7}\\{4/7}\end{array}} \right)\), \({x_0} = \left( {\begin{array}{*{20}{c}}{.5}\\{.5}\end{array}} \right)\). (Note: \(A\) is the stochastic matrix studied in Example 5 of Section 4.9.)

  1. Find a basic for \({\mathbb{R}^2}\) consisting of \({{\rm{v}}_1}\) and anther eigenvector \({{\rm{v}}_2}\) of \(A\).
  2. Verify that \({{\rm{x}}_0}\) may be written in the form \({{\rm{x}}_0} = {{\rm{v}}_1} + c{{\rm{v}}_2}\).
  3. For \(k = 1,2, \ldots \), define \({x_k} = {A^k}{x_0}\). Compute \({x_1}\) and \({x_2}\), and write a formula for \({x_k}\). Then show that \({{\bf{x}}_k} \to {{\bf{v}}_1}\) as \(k\) increases.

Question: In Exercises \({\bf{3}}\) and \({\bf{4}}\), use the factorization \(A = PD{P^{ - {\bf{1}}}}\) to compute \({A^k}\) where \(k\) represents an arbitrary positive integer.

3. \(\left( {\begin{array}{*{20}{c}}a&0\\{3\left( {a - b} \right)}&b\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0\\3&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}a&0\\0&b\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\{ - 3}&1\end{array}} \right)\)

Show that if \({\bf{x}}\) is an eigenvector of the matrix product \(AB\) and \(B{\rm{x}} \ne 0\), then \(B{\rm{x}}\) is an eigenvector of\(BA\).

Let\(G = \left( {\begin{aligned}{*{20}{c}}A&X\\{\bf{0}}&B\end{aligned}} \right)\). Use formula\(\left( {\bf{1}} \right)\)for the determinant in section\({\bf{5}}{\bf{.2}}\)to explain why\(\det G = \left( {\det A} \right)\left( {\det B} \right)\). From this, deduce that the characteristic polynomial of\(G\)is the product of the characteristic polynomials of\(A\)and\(B\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free