Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Exercises \({\bf{1}}\) and \({\bf{2}}\), let \(A = PD{P^{ - {\bf{1}}}}\) and compute \({A^{\bf{4}}}\).

1. \(P{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{7}}\\{\bf{2}}&{\bf{3}}\end{array}} \right)\), \(D{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{2}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}\end{array}} \right)\)

Short Answer

Expert verified

The required value is \({A^4} = \left( {\begin{array}{*{20}{c}}{226}&{ - 525}\\{90}&{ - 209}\end{array}} \right)\).

Step by step solution

01

Write the Diagonalization Theorem

The Diagonalization Theorem: An \(n \times n\) matrix \(A\) is diagonalizable if and only if \(A\) has \(n\) linearly independent eigenvectors. As \(A = PD{P^{ - 1}}\) which has \(D\) a diagonal matrix if and only if the columns of \(P\) are \(n\) linearly independent eigenvectors of \(A\).

02

Find the inverse of the invertible matrix

Consider the matrix \(P = \left( {\begin{array}{*{20}{c}}5&7\\2&3\end{array}} \right)\)and \(D = \left( {\begin{array}{*{20}{c}}2&0\\0&1\end{array}} \right)\).

\[\begin{array}{P^{ - 1}} = \frac{1}{{5 \times 3 - 7 \times 2}}\left( {\begin{array}{*{20}{c}}3&{ - 7}\\{ - 2}&5\end{array}} \right)\\ = \frac{1}{{15 - 14}}\left( {\begin{array}{*{20}{c}}3&{ - 7}\\{ - 2}&5\end{array}} \right)\\ = \frac{1}{1}\left( {\begin{array}{*{20}{c}}3&{ - 7}\\{ - 2}&5\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}3&{ - 7}\\{ - 2}&5\end{array}} \right)\end{array}\]

03

Find \({{\bf{4}}^{{\bf{th}}}}\)the power of the diagonal matrix

\[\begin{array}{l}D = \left( {\begin{array}{*{20}{c}}2&0\\0&1\end{array}} \right)\\{D^2} = \left( {\begin{array}{*{20}{c}}{{2^2}}&0\\0&{{1^2}}\end{array}} \right)\\{D^3} = \left( {\begin{array}{*{20}{c}}{{2^3}}&0\\0&{{1^3}}\end{array}} \right)\\{D^4} = \left( {\begin{array}{*{20}{c}}{{2^4}}&0\\0&{{1^4}}\end{array}} \right)\\{D^4} = \left( {\begin{array}{*{20}{c}}{16}&0\\0&1\end{array}} \right)\end{array}\]

04

Find \({A^{\bf{4}}}\)

Consider the matrix \(P = \left( {\begin{array}{*{20}{c}}5&7\\2&3\end{array}} \right)\)and \(D = \left( {\begin{array}{*{20}{c}}2&0\\0&1\end{array}} \right)\).

As it is given that \(A = PD{P^{ - 1}}\)than by using the formula for \({n^{th}}\) power we get:

\[{A^n} = P{D^n}{P^{ - 1}}\].

Then we get:

\[\begin{array}{A^4} = P{D^4}{P^{ - 1}}\\ = \left( {\begin{array}{*{20}{c}}5&7\\2&3\end{array}} \right)\left( {\begin{array}{*{20}{c}}{16}&0\\0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&{ - 7}\\{ - 2}&5\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{80}&7\\{32}&3\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&{ - 7}\\{ - 2}&5\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{226}&{ - 525}\\{90}&{ - 209}\end{array}} \right)\end{array}\]

Thus, \({A^4} = \left( {\begin{array}{*{20}{c}}{226}&{ - 525}\\{90}&{ - 209}\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

9. \(\left( {\begin{array}{*{20}{c}}3&{ - 1}\\1&5\end{array}} \right)\)

Let \(A{\bf{ = }}\left( {\begin{aligned}{*{20}{c}}{{a_{{\bf{11}}}}}&{{a_{{\bf{12}}}}}\\{{a_{{\bf{21}}}}}&{{a_{{\bf{22}}}}}\end{aligned}} \right)\). Recall from Exercise \({\bf{25}}\) in Section \({\bf{5}}{\bf{.4}}\) that \({\rm{tr}}\;A\) (the trace of \(A\)) is the sum of the diagonal entries in \(A\). Show that the characteristic polynomial of \(A\) is \({\lambda ^2} - \left( {{\rm{tr}}A} \right)\lambda + \det A\). Then show that the eigenvalues of a \({\bf{2 \times 2}}\) matrix \(A\) are both real if and only if \(\det A \le {\left( {\frac{{{\rm{tr}}A}}{2}} \right)^2}\).

Exercises 19โ€“23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left[ {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right]\).

22. Let \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + {a_{\bf{2}}}{t^{\bf{2}}} + {t^{\bf{3}}}\), and let \(\lambda \) be a zero of \(p\).

  1. Write the companion matrix for \(p\).
  2. Explain why \({\lambda ^{\bf{3}}} = - {a_{\bf{0}}} - {a_{\bf{1}}}\lambda - {a_{\bf{2}}}{\lambda ^{\bf{2}}}\), and show that \(\left( {{\bf{1}},\lambda ,{\lambda ^2}} \right)\) is an eigenvector of the companion matrix for \(p\).

For the matrices Afind real closed formulas for the trajectoryxโ†’(t+1)=Axโ†’(t)wherexโ†’(0)=[01]. Draw a rough sketchA=[1-31.2-2.6]

A particle moving in a planar force field has a position vector .\(x\). that satisfies \(x' = Ax\). The \(2 \times 2\) matrix \(A\) has eigenvalues 4 and 2, with corresponding eigenvectors \({v_1} = \left( {\begin{aligned}{{20}{c}}{ - 3}\\1\end{aligned}} \right)\) and \({v_2} = \left( {\begin{aligned}{{20}{c}}{ - 1}\\1\end{aligned}} \right)\). Find the position of the particle at a time \(t\), assuming that \(x\left( 0 \right) = \left( {\begin{aligned}{{20}{c}}{ - 6}\\1\end{aligned}} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free