As the sum of all the eigenvalues of\(A\)is equal to the sum of the diagonal entries of\(A\), we can find the third eigenvalue:
\(\begin{array}{c}3 + 1 + x = 7 + 5 - 5\\x = 3\end{array}\)
So, the eigenvalues are\(3,3,1\).
Find eigenvectors.
Write the matrix form for finding the eigenvector for\(\lambda = 3\).
\(\begin{array}{c}A - 3I = 0\\\left( {\begin{array}{*{20}{c}}7&4&{16}\\2&5&8\\{ - 2}&{ - 2}&{ - 5}\end{array}} \right) - 3\left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&1&1\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}4&4&{16}\\2&2&8\\{ - 2}&{ - 2}&{ - 8}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\end{array}\)
Write the Row-reduced Augmented matrix.
\(\begin{array}{c}M = \left( {\begin{array}{*{20}{c}}4&4&{16}&0\\2&2&8&0\\{ - 2}&{ - 2}&{ - 8}&0\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1&1&4&0\\2&2&8&0\\{ - 2}&{ - 2}&{ - 8}&0\end{array}} \right)\;\left\{ \begin{array}{l}{R_1} = \frac{{{R_1}}}{4}\\{R_2} = {R_2} - 2{R_1}\\{R_3} = {R_3} + 2{R_1}\end{array} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&1&4&0\\0&0&0&0\\0&0&0&0\end{array}} \right)\end{array}\)
Therefore, the parametric form of the solution is shown below:
\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{ - {x_2} - 4{x_3}}\\{{x_2}}\\{{x_3}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - {x_2}}\\{{x_2}}\\0\end{array}} \right) + {x_3}\left( {\begin{array}{*{20}{c}}{ - 4{x_3}}\\0\\{{x_3}}\end{array}} \right)\\ = {x_2}\left( {\begin{array}{*{20}{c}}{ - 1}\\1\\0\end{array}} \right) + {x_3}\left( {\begin{array}{*{20}{c}}{ - 4}\\0\\1\end{array}} \right)\end{array}\)
Therefore, the eigenvector for \(\lambda = 3\)are\(\left\{ {{{\rm{v}}_1},{{\rm{v}}_2}} \right\} = \left\{ {\left( {\begin{array}{*{20}{c}}{ - 1}\\1\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}{ - 4}\\0\\1\end{array}} \right)} \right\}\).
Find eigenvectors.
Write the matrix form for finding the eigenvector for\(\lambda = 1\).
\(\begin{array}{c}A - I = 0\\\left( {\begin{array}{*{20}{c}}7&4&{16}\\2&5&8\\{ - 2}&{ - 2}&{ - 5}\end{array}} \right) - \left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&1&1\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}6&4&{16}\\2&4&8\\{ - 2}&{ - 2}&{ - 6}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\end{array}\)
Write the Row-reduced Augmented matrix.
\(\begin{array}{c}M = \left( {\begin{array}{*{20}{c}}6&4&{16}&0\\2&4&8&0\\{ - 2}&{ - 2}&{ - 6}&0\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1&{\frac{2}{3}}&{\frac{8}{3}}&0\\2&{\frac{8}{3}}&{\frac{8}{3}}&0\\{ - 2}&{ - \frac{2}{3}}&{ - \frac{2}{3}}&0\end{array}} \right)\;\left\{ {{R_1} = \frac{{{R_1}}}{6}} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&{\frac{2}{3}}&{\frac{8}{3}}&0\\0&{\frac{8}{3}}&{\frac{8}{3}}&0\\0&{ - \frac{2}{3}}&{ - \frac{2}{3}}&0\end{array}} \right)\;\left\{ \begin{array}{l}{R_2} = {R_2} - 2{R_1}\\{R_3} = {R_3} + 2{R_1}\\{R_1} = {R_1} + {R_3}\\{R_2} = \frac{3}{8}{R_2}\\{R_3} = {R_3} + {R_2}\end{array} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0&2&0\\0&1&1&0\\0&0&0&0\end{array}} \right)\end{array}\)
Therefore, the parametric form of the solution is shown below:
\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{ - 2{x_3}}\\{ - {x_3}}\\{{x_3}}\end{array}} \right)\\ = {x_3}\left( {\begin{array}{*{20}{c}}{ - 2}\\{ - 1}\\1\end{array}} \right)\end{array}\)
Therefore, the eigenvector for \(\lambda = 1\) are \(\left\{ {{{\rm{v}}_3}} \right\} = \left\{ {\left( {\begin{array}{*{20}{c}}{ - 2}\\{ - 1}\\1\end{array}} \right)} \right\}\).