As the sum of all the eigenvalues of\(A\)is equal to the sum of the diagonal entries of\(A\), we can find the third eigenvalue:
\(\begin{array}{c}1 + 5 + x = 2 + 3 + 2\\x = 7 - 6\\x = 1\end{array}\)
So, the eigenvalues are\(1,1,5\).
Find eigenvectors.
Write the matrix form for finding the eigenvector for\(\lambda = 1\).
\(\begin{array}{c}\left( {A - I} \right){\bf{x}} = 0\\\left( {\begin{array}{*{20}{c}}2&2&{ - 1}\\1&3&{ - 1}\\{ - 1}&{ - 2}&2\end{array}} \right) - 1\left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&1&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}1&2&{ - 1}\\1&2&{ - 1}\\{ - 1}&{ - 2}&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\end{array}\)
Write the Row-reduced Augmented matrix.
\(\begin{array}{c}M = \left( {\begin{array}{*{20}{c}}1&2&{ - 1}&0\\0&0&0&0\\0&0&0&0\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1&2&{ - 1}&0\\0&0&0&0\\0&0&0&0\end{array}} \right)\;\left\{ \begin{array}{l}{R_2} = {R_2} - {R_1}\\{R_3} = {R_3} + {R_1}\end{array} \right\}\end{array}\)
Therefore, the parametric form of the solution is shown below:
\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{ - 2{x_2} + {x_3}}\\{{x_2}}\\{{x_3}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - 2{x_2}}\\{{x_2}}\\0\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{{x_3}}\\0\\{{x_3}}\end{array}} \right)\\ = {x_2}\left( {\begin{array}{*{20}{c}}{ - 2}\\1\\0\end{array}} \right) + {x_3}\left( {\begin{array}{*{20}{c}}1\\0\\1\end{array}} \right)\end{array}\)
Therefore, the eigenvector for \(\lambda = 1\)are\(\left\{ {{{\rm{v}}_1},{{\rm{v}}_2}} \right\} = \left\{ {\left( {\begin{array}{*{20}{c}}\begin{array}{l} - 2\\1\end{array}\\0\end{array}} \right) + \left( {\begin{array}{*{20}{c}}\begin{array}{l}1\\0\end{array}\\1\end{array}} \right)} \right\}\).
Write the matrix form for finding the eigenvector for\(\lambda = 5\).
\(\begin{array}{c}\left( {A - 5I} \right){\bf{x}} = 0\\\left( {\begin{array}{*{20}{c}}2&2&{ - 1}\\1&3&{ - 1}\\{ - 1}&{ - 2}&2\end{array}} \right) - 5\left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&1&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}{ - 3}&2&{ - 1}\\1&{ - 2}&{ - 1}\\{ - 1}&{ - 2}&{ - 3}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\end{array}\)
Write the Row-reduced Augmented matrix.
\(\begin{array}{c}M = \left( {\begin{array}{*{20}{c}}{ - 3}&2&{ - 1}&0\\1&{ - 2}&{ - 1}&0\\{ - 1}&{ - 2}&{ - 3}&0\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1&2&{ - 1}&0\\0&1&1&0\\0&0&0&0\end{array}} \right)\;\left\{ \begin{array}{l}{R_2} = {R_2} + \frac{{{R_1}}}{3}\\{R_3} = {R_3} - \frac{{{R_1}}}{3}\\{R_2} = \frac{3}{4}{R_2}\end{array} \right\}\end{array}\)
Therefore, the parametric form of the solution is shown below:
\(\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{ - 1}\\{ - 1}\\1\end{array}} \right){x_3}\)
Therefore, the eigenvector for \(\lambda = 5\) are \({{\rm{v}}_3} = \left( {\begin{array}{*{20}{c}}{ - 1}\\{ - 1}\\1\end{array}} \right)\).