Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

6. \(\left[ {\begin{array}{*{20}{c}}3&- 4\\4&8\end{array}} \right]\)

Short Answer

Expert verified

Characteristic polynomial:\({\lambda ^2} - 11\lambda + 40\).

\(A\) has no real Eigen values.

Step by step solution

01

Find the characteristic polynomial

Ifis an\(n \times n\)matrix, then\(det\left( {A - \lambda I} \right)\), which is a polynomial of degree\(n\), is called the characteristic polynomial of\(A\).

It is given that \(A = \left[ {\begin{array}{*{20}{c}}3&- 4\\4&8\end{array}} \right]\) and \(I = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\) is identity matrix. Find the matrix\(\left( {A - \lambda I} \right)\) as shown below:

\[\begin{array}A - \lambda I = \left[ {\begin{array}{*{20}{c}}3&- 4\\4&8\end{array}} \right] - \lambda \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{3 - \lambda }&{ - 4}\\4&{8 - \lambda }\end{array}} \right]\end{array}\]

Now, calculate the determinant of the matrix\(\left( {A - \lambda I} \right)\)as shown below:

\[\begin{array}det\left( {A - \lambda I} \right) = det\left[ {\begin{array}{*{20}{c}}{3 - \lambda }&{ - 4}\\4&{8 - \lambda }\end{array}} \right]\\ = \left( {8 - \lambda } \right)\left( {3 - {\rm{\lambda }}} \right) + 16\\ = {\lambda ^2} - 11\lambda + 24 + 16\\ = {\lambda ^2} - 11\lambda + 40\end{array}\]

So, the characteristic polynomial of is \({\lambda ^2} - 11\lambda + 40\).

02

Describe the characteristic equation

To find the eigenvalues of the matrix, we must calculate all the scalarssuch that\(\left( {A - \lambda I} \right)x = 0\) has a non-trivial solution which is equivalent to finding allsuch that the matrix\(\left( {A - \lambda I} \right)\)is not invertible, that is, when determinant of\(\left( {A - \lambda I} \right)\)is zero.

Thus, the eigenvalues of\(A\)are the solutions of the characteristic equation\(\det \left( {A - \lambda I} \right) = 0\). So, find the characteristic equation\(\det \left( {A - \lambda I} \right) = 0\).

\[\begin{array}det\left[ {\begin{array}{*{20}{c}}{3 - \lambda }&{ - 4}\\4&{8 - \lambda }\end{array}} \right] = 0\\\left( {8 - \lambda } \right)\left( {3 - {\rm{\lambda }}} \right) + 16 = 0\\{\lambda ^2} - 11\lambda + 24 + 16 = 0\\{\lambda ^2} - 11\lambda + 40 = 0\end{array}\]

03

Find roots of characteristic equation

For the quadratic equation,\(a{x^2} + bx + c = 0\), the general solution is given as\(x = \frac{{ - b \pm \sqrt {{b^2} - 4ac} \;\;}}{{2a}}\).

Thus, the solution of the characteristic equation\[{\lambda ^2} - 11\lambda + 40 = 0\]is obtained as follows:

\[\begin{array}{\lambda ^2} - 11\lambda + 40 = 0\\\lambda = \frac{{ - \left( { - 11} \right) \pm \sqrt {{{\left( { - 11} \right)}^2} - 4\left( {40} \right)} }}{2}\\ = \frac{{ - 11 \pm \sqrt { - 39} }}{2}\end{array}\]

The eigenvalues of \(A\) are complex. So, \(A\) has no real Eigen values. This implies that no real vector \(x\)in \({\mathbb{R}^2}\)satisfies the characteristic equation \(\left( {A - \lambda I} \right)x = 0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question 20: Use a property of determinants to show that \(A\) and \({A^T}\) have the same characteristic polynomial.

In Exercises 9–16, find a basis for the eigenspace corresponding to each listed eigenvalue.

10. \(A = \left( {\begin{array}{*{20}{c}}{10}&{ - 9}\\4&{ - 2}\end{array}} \right)\), \(\lambda = 4\)

Question: In Exercises 21 and 22, \(A\) and \(B\) are \(n \times n\) matrices. Mark each statement True or False. Justify each answer.

  1. If \(A\) is \(3 \times 3\), with columns \({{\rm{a}}_1}\), \({{\rm{a}}_2}\), and \({{\rm{a}}_3}\), then \(\det A\) equals the volume of the parallelepiped determined by \({{\rm{a}}_1}\), \({{\rm{a}}_2}\), and \({{\rm{a}}_3}\).
  2. \(\det {A^T} = \left( { - 1} \right)\det A\).
  3. The multiplicity of a root \(r\) of the characteristic equation of \(A\) is called the algebraic multiplicity of \(r\) as an eigenvalue of \(A\).
  4. A row replacement operation on \(A\) does not change the eigenvalues.

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

21. Use mathematical induction to prove that for \(n \ge {\bf{2}}\),\(\begin{aligned}{c}det\left( {{C_p} - \lambda I} \right) = {\left( { - {\bf{1}}} \right)^n}\left( {{a_{\bf{0}}} + {a_{\bf{1}}}\lambda + ... + {a_{n - {\bf{1}}}}{\lambda ^{n - {\bf{1}}}} + {\lambda ^n}} \right)\\ = {\left( { - {\bf{1}}} \right)^n}p\left( \lambda \right)\end{aligned}\)

(Hint: Expanding by cofactors down the first column, show that \(det\left( {{C_p} - \lambda I} \right)\) has the form \(\left( { - \lambda B} \right) + {\left( { - {\bf{1}}} \right)^n}{a_{\bf{0}}}\) where \(B\) is a certain polynomial (by the induction assumption).)

Question 18: It can be shown that the algebraic multiplicity of an eigenvalue \(\lambda \) is always greater than or equal to the dimension of the eigenspace corresponding to \(\lambda \). Find \(h\) in the matrix \(A\) below such that the eigenspace for \(\lambda = 5\) is two-dimensional:

\[A = \left[ {\begin{array}{*{20}{c}}5&{ - 2}&6&{ - 1}\\0&3&h&0\\0&0&5&4\\0&0&0&1\end{array}} \right]\]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free