Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Let \(A = \left( {\begin{array}{*{20}{c}}{ - 6}&{28}&{21}\\4&{ - 15}&{ - 12}\\{ - 8}&a&{25}\end{array}} \right)\). For each value of \(a\) in the set \(\left\{ {32,31.9,31.8,32.1,32.2} \right\}\), compute the characteristic polynomial of \(A\) and the eigenvalues. In each case, create a graph of the characteristic polynomial \(p\left( t \right) = \det \left( {A - tI} \right)\) for \(0 \le t \le 3\). If possible, construct all graphs on one coordinate system. Describe how the graphs reveal the changes in the eigenvalues of \(a\) changes.

Short Answer

Expert verified

Characteristic polynomial and eigenvalues are:

\[a\]

Characteristic polynomial

Eigenvalues

\[31.8\]

\[ - .4 - 2.6t + 4{t^2} - {t^3}\]

\[3.1279,1, - .1279\]

\[31.9\]

\[.8 - 3.8t + 4{t^2} - {t^3}\]

\[2.7042,1,.2958\]

\[32.0\]

\[2 - 5t + 4{t^2} - {t^3}\]

\[2,1,1\]

\[32.1\]

\[3.2 - 6.2t + 4{t^2} - {t^3}\]

\[1.5 \pm .9747i,1\]

\[32.2\]

\[4.4 - 7.4t + 4{t^2} - {t^3}\]

\[1.5 \pm 1.4663i,1\]

The graph of the characteristic polynomial is shown below:

Step by step solution

01

Determine characteristic polynomial and eigenvalues for the matrix A

Consider the matrix\(A = \left( {\begin{array}{*{20}{c}}{ - 6}&{28}&{21}\\4&{ - 15}&{ - 12}\\{ - 8}&a&{25}\end{array}} \right)\). Consider \(a = 32\).

Use the following command in the MATLAB to find the characteristic polynomial and eigenvalues of the matrix.

\[\begin{array}{l} > > {\rm{A}} = \left( {\begin{array}{*{20}{c}}{ - 6}&{28}&{21;}&4&{ - 15}&{ - 12;}\\{ - 8}&{32}&{25;}&{}&{}&{}\end{array}} \right);\\ > > {\rm{p}} = {\rm{poly}}\left( {\rm{A}} \right);\\ > > {\rm{eig}} = {\rm{eign}}\left( {\rm{A}} \right)\end{array}\]

So, the characteristic polynomial and eigenvalues of A is \(p = 2 - 5t + 4{t^2} - {t^3}\), \({\rm{eig}} = \left\{ {2,1,1} \right\}\).

02

Determine characteristic polynomial and eigenvalues for the matrix A for each value of set a

Use the following command in MATLAB to find the characteristic polynomial and eigenvalues of the matrix.

\[\begin{array}{l} > > {\rm{A}} = \left( {\begin{array}{*{20}{c}}{ - 6}&{28}&{21;}&4&{ - 15}&{ - 12;}\\{ - 8}&a&{25;}&{}&{}&{}\end{array}} \right);\\ > > {\rm{p}} = {\rm{poly}}\left( {\rm{A}} \right);\\ > > {\rm{eig}} = {\rm{eign}}\left( {\rm{A}} \right)\end{array}\]

So, the characteristic polynomial and eigenvalues of A is shown below:

\[a\]

Characteristic polynomial

Eigenvalues

\[31.8\]

\[ - .4 - 2.6t + 4{t^2} - {t^3}\]

\[3.1279,1, - .1279\]

\[31.9\]

\[.8 - 3.8t + 4{t^2} - {t^3}\]

\[2.7042,1,.2958\]

\[32.0\]

\[2 - 5t + 4{t^2} - {t^3}\]

\[2,1,1\]

\[32.1\]

\[3.2 - 6.2t + 4{t^2} - {t^3}\]

\[1.5 \pm .9747i,1\]

\[32.2\]

\[4.4 - 7.4t + 4{t^2} - {t^3}\]

\[1.5 \pm 1.4663i,1\]

03

Plot the graph of characteristic polynomial

The procedure to draw the graph of the above equation by using the graphing calculator is as follows:

Draw the graph of the function\(f\left( t \right) = - .4 - 2.6t + 4{t^2} - {t^3}\), \(g\left( t \right) = .8 - 3.8t + 4{t^2} - {t^3}\), \(k\left( t \right) = 2 - 5t + 4{t^2} - {t^3}\), \(x\left( t \right) = 3.2 - 6.2t + 4{t^2} - {t^3}\) and \(y\left( t \right) = 4.4 - 7.4t + 4{t^2} - {t^3}\)by using the graphing calculator as shown below:

  1. Open the graphing calculator. Select the “STAT PLOT” and enter the equation\( - .4 - 2.6t + 4{t^2} - {t^3}\)in the\({Y_1}\)tab.
  2. Select the “STAT PLOT” and enter the equation\(.8 - 3.8t + 4{t^2} - {t^3}\)in the\({Y_2}\)tab.
  3. Select the “STAT PLOT” and enter the equation\(2 - 5t + 4{t^2} - {t^3}\)in the\({Y_3}\)tab.
  4. Select the “STAT PLOT” and enter the equation\(3.2 - 6.2t + 4{t^2} - {t^3}\)in the\({Y_4}\)tab.
  5. Select the “STAT PLOT” and enter the equation\(4.4 - 7.4t + 4{t^2} - {t^3}\)in the\({Y_5}\)tab.
  6. Enter the “GRAPH” button in the graphing calculator.

Visualizations of graphs of the functionsstated above are shown below:

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

[M]Repeat Exercise 25 for \[A{\bf{ = }}\left[ {\begin{array}{*{20}{c}}{{\bf{ - 8}}}&{\bf{5}}&{{\bf{ - 2}}}&{\bf{0}}\\{{\bf{ - 5}}}&{\bf{2}}&{\bf{1}}&{{\bf{ - 2}}}\\{{\bf{10}}}&{{\bf{ - 8}}}&{\bf{6}}&{{\bf{ - 3}}}\\{\bf{3}}&{{\bf{ - 2}}}&{\bf{1}}&{\bf{0}}\end{array}} \right]\].

Show that if \({\bf{x}}\) is an eigenvector of the matrix product \(AB\) and \(B{\rm{x}} \ne 0\), then \(B{\rm{x}}\) is an eigenvector of\(BA\).

Question: In Exercises \({\bf{1}}\) and \({\bf{2}}\), let \(A = PD{P^{ - {\bf{1}}}}\) and compute \({A^{\bf{4}}}\).

2. \(P{\bf{ = }}\left( {\begin{array}{*{20}{c}}2&{ - 3}\\{ - 3}&5\end{array}} \right)\), \(D{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\frac{{\bf{1}}}{{\bf{2}}}}\end{array}} \right)\)

Let\(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2},{{\bf{b}}_3}} \right\}\) be a basis for a vector space\(V\). Find \(T\left( {3{{\bf{b}}_1} - 4{{\bf{b}}_2}} \right)\) when \(T\) isa linear transformation from \(V\) to \(V\) whose matrix relative to \(B\) is

\({\left( T \right)_B} = \left( {\begin{aligned}0&{}&{ - 6}&{}&1\\0&{}&5&{}&{ - 1}\\1&{}&{ - 2}&{}&7\end{aligned}} \right)\)

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

11. \(\left( {\begin{array}{*{20}{c}}{ - 1}&4&{ - 2}\\{ - 3}&4&0\\{ - 3}&1&3\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free