Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Show that if \(A\) and \(B\) are similar, then \(\det A = \det B\).

Short Answer

Expert verified

It is proved that \({\rm{det}}A = {\rm{det}}B\).

Step by step solution

01

Write the given condition

Consider that\(P\) is invertible. Then, use Theorem 3 (Property of Determinant): \(\det AB = \left( {\det A} \right)\left( {\det B} \right)\).

\[\begin{array}I = {\rm{det}}I\\ = {\rm{det}}\left( {P{P^{ - 1}}} \right)\\ = \left( {{\rm{det}}P} \right)\left( {{\rm{det}}{P^{ - 1}}} \right)\end{array}\]

02

Show that \({\rm{det}}A = {\rm{det}}B\)

Assume that \(A = PB{P^{ - 1}}\). Then use theorem 3 (Property of Determinant): \(\det AB = \left( {\det A} \right)\left( {\det B} \right)\).

\[\begin{array}{\rm{det}}A = {\rm{det}}\left( {PB{P^{ - 1}}} \right)\\ = {\rm{det}}\left( P \right){\rm{det}}\left( B \right){\rm{det}}\left( {{P^{ - 1}}} \right)\\ = {\rm{det}}\left( B \right){\rm{det}}\left( P \right){\rm{det}}\left( {{P^{ - 1}}} \right)\\ = {\rm{det}}\left( B \right){\rm{det}}\left( I \right)\\ = {\rm{det}}B\end{array}\]

Thus, this implies that \({\rm{det}}A = {\rm{det}}B\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

7. \(\left[ {\begin{array}{*{20}{c}}5&3\\- 4&4\end{array}} \right]\)

Question: Is \(\left( {\begin{array}{*{20}{c}}1\\{ - 2}\\1\end{array}} \right)\) an eigenvector of\(\left){\begin{array}{*{20}{c}}3&6&7\\3&3&7\\5&6&5\end{array}} \right)\)? If so, find the eigenvalue.

Use mathematical induction to show that if \(\lambda \) is an eigenvalue of an \(n \times n\) matrix \(A\), with a corresponding eigenvector, then, for each positive integer \(m\), \({\lambda ^m}\)is an eigenvalue of \({A^m}\), with \({\rm{x}}\) a corresponding eigenvector.

Question: Let \(A = \left( {\begin{array}{*{20}{c}}{ - 6}&{28}&{21}\\4&{ - 15}&{ - 12}\\{ - 8}&a&{25}\end{array}} \right)\). For each value of \(a\) in the set \(\left\{ {32,31.9,31.8,32.1,32.2} \right\}\), compute the characteristic polynomial of \(A\) and the eigenvalues. In each case, create a graph of the characteristic polynomial \(p\left( t \right) = \det \left( {A - tI} \right)\) for \(0 \le t \le 3\). If possible, construct all graphs on one coordinate system. Describe how the graphs reveal the changes in the eigenvalues of \(a\) changes.

Question: In Exercises \({\bf{5}}\) and \({\bf{6}}\), the matrix \(A\) is factored in the form \(PD{P^{ - {\bf{1}}}}\). Use the Diagonalization Theorem to find the eigenvalues of \(A\) and a basis for each eigenspace.

6. \(\left( {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{0}}&{{\bf{ - 2}}}\\{\bf{2}}&{\bf{5}}&{\bf{4}}\\{\bf{0}}&{\bf{0}}&{\bf{5}}\end{array}} \right){\bf{ = }}\left( {\begin{array}{*{20}{c}}{{\bf{ - 2}}}&{\bf{0}}&{{\bf{ - 1}}}\\{\bf{0}}&{\bf{1}}&{\bf{2}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{5}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&4\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\bf{0}}&{\bf{0}}&{\bf{1}}\\{\bf{2}}&{\bf{1}}&{\bf{4}}\\{{\bf{ - 1}}}&{\bf{0}}&{{\bf{ - 2}}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free