Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Exercises 21 and 22, \(A\) and \(B\) are \(n \times n\) matrices. Mark each statement True or False. Justify each answer.

  1. The determinant of \(A\) is the product of the diagonal entries in \(A\).
  2. An elementary row operation on \(A\) does not change the determinant.
  3. \(\left( {\det A} \right)\left( {\det B} \right) = \det AB\)
  4. If \(\lambda + 5\) is a factor of the characteristic polynomial of \(A\), then 5 is an eigenvalue of \(A\).

Short Answer

Expert verified

a. The given statement is False.

b. The given statement is False.

c. The given statement is True.

d. The given statement is False.

Step by step solution

01

Find an answer for part (a)

Assume that matrix \(A\) be a \(2 \times 2\) matrix and consider matrix as \(A = \left( {\begin{array}{*{20}{c}}2&3\\3&{ - 6}\end{array}} \right)\).

Find the determinant of a matrix \(A\).

\[\begin{array}\det A = 2\left( { - 6} \right) - 3\left( 3 \right)\\ = - 12 - 9\\ = - 21\end{array}\]

The product of diagonal entries is \( - 12\) which is not equal to the determinant of a matrix \(A\), that is, \( - 12 \ne - 21\).

Therefore, the given statement is False.

02

Find an answer for part (b)

According to theorem 3 (properties of the determinant); When an elementary row operation is applied on a matrix \(A\) of order \(n \times n\), then the determinant of the matrix \(A\) changes, that is, when rows of the matrix are interchanged, then the sign of the determinant changes and if the row is multiplied by any scalar factor then the determinant is also multiplied by a scalar factor.

Therefore, the given statement is False.

03

Find an answer for part (c)

According to Theorem 3 (Property of Determinant); \(\det AB = \left( {\det A} \right)\left( {\det B} \right)\).

Therefore, the given statement is True.

04

Find an answer for part (d)

To obtain the eigenvalues, we equate characteristic polynomial to 0. This implies that if \(\lambda + 5\) is the factor of the characteristic polynomial, then \( - 5\) is an eigenvalue of \(A\).

Therefore, the given statement is false.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider an invertible n × n matrix A such that the zero state is a stable equilibrium of the dynamical system x(t+1)=ATx(t)What can you say about the stability of the systems.

x(t+1)=ATx(t)

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

6. \(\left[ {\begin{array}{*{20}{c}}3&- 4\\4&8\end{array}} \right]\)

Question: Is \(\left( {\begin{array}{*{20}{c}}1\\4\end{array}} \right)\) an eigenvalue of \(\left( {\begin{array}{*{20}{c}}{ - 3}&1\\{ - 3}&8\end{array}} \right)\)? If so, find the eigenvalue.

Question: In Exercises \({\bf{5}}\) and \({\bf{6}}\), the matrix \(A\) is factored in the form \(PD{P^{ - {\bf{1}}}}\). Use the Diagonalization Theorem to find the eigenvalues of \(A\) and a basis for each eigenspace.

6. \(\left( {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{0}}&{{\bf{ - 2}}}\\{\bf{2}}&{\bf{5}}&{\bf{4}}\\{\bf{0}}&{\bf{0}}&{\bf{5}}\end{array}} \right){\bf{ = }}\left( {\begin{array}{*{20}{c}}{{\bf{ - 2}}}&{\bf{0}}&{{\bf{ - 1}}}\\{\bf{0}}&{\bf{1}}&{\bf{2}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{5}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&4\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\bf{0}}&{\bf{0}}&{\bf{1}}\\{\bf{2}}&{\bf{1}}&{\bf{4}}\\{{\bf{ - 1}}}&{\bf{0}}&{{\bf{ - 2}}}\end{array}} \right)\)

In Exercises \({\bf{3}}\) and \({\bf{4}}\), use the factorization \(A = PD{P^{ - {\bf{1}}}}\) to compute \({A^k}\) where \(k\) represents an arbitrary positive integer.

4. \(\left( {\begin{array}{*{20}{c}}{ - 2}&{12}\\{ - 1}&5\end{array}} \right) = \left( {\begin{array}{*{20}{c}}3&4\\1&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}2&0\\0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - 1}&4\\1&{ - 3}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free