Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question 19: Let \(A\) be an \(n \times n\) matrix, and suppose A has \(n\) real eigenvalues, \({\lambda _1},...,{\lambda _n}\), repeated according to multiplicities, so that \(\det \left( {A - \lambda I} \right) = \left( {{\lambda _1} - \lambda } \right)\left( {{\lambda _2} - \lambda } \right) \ldots \left( {{\lambda _n} - \lambda } \right)\) . Explain why \(\det A\) is the product of the n eigenvalues of A. (This result is true for any square matrix when complex eigenvalues are considered.)

Short Answer

Expert verified

The \(\det A\) is the product of \(n\) eigenvalues of A.

Step by step solution

01

Definition of a multiplicity of an eigenvalue

In particular, the multiplicity of an eigenvalue \(\lambda \) represents its multiplication as a root of the characteristic equation.

02

Explain why \(\det A\) is the product of \(n\) eigenvalues of A

Consider \(A\) as an \(n \times n\) matrix and let \(A\) has \(n\) real eigenvalues \({\lambda _1}, \ldots ,{\lambda _n}\), repeated from the multiplicities.

For all \(\lambda \), it is true that \(\det \left( {A - \lambda I} \right) = \left( {{\lambda _1} - \lambda } \right)\left( {{\lambda _2} - \lambda } \right) \ldots \left( {{\lambda _n} - \lambda } \right)\). Let \(\lambda = 0\), so \(\det A = {\lambda _1},{\lambda _2}, \ldots ,{\lambda _n}\).

It is deduced that \(\det A = {\lambda _1},{\lambda _2}, \ldots ,{\lambda _n}\) because the equation \(\det \left( {A - \lambda I} \right) = \left( {{\lambda _1} - \lambda } \right)\left( {{\lambda _2} - \lambda } \right) \ldots \left( {{\lambda _n} - \lambda } \right)\) is true for all \(\lambda \).

Thus, \(\det A\) is the product of \(n\) eigenvalues of A.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show that if \(A\) is diagonalizable, with all eigenvalues less than 1 in magnitude, then \({A^k}\) tends to the zero matrix as \(k \to \infty \). (Hint: Consider \({A^k}x\) where \(x\) represents any one of the columns of \(I\).)

Question 20: Use a property of determinants to show that \(A\) and \({A^T}\) have the same characteristic polynomial.

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

10. \(\left( {\begin{array}{*{20}{c}}{\bf{2}}&{\bf{3}}\\{\bf{4}}&{\bf{1}}\end{array}} \right)\)

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{array}{*{20}{c}}4\\6\end{array}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{array}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{array}{*{20}{c}}6\\{ - 2}\\3\end{array}} \right)\)

3. \(\frac{1}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{\mathop{\rm w}\nolimits} \)

Question: Construct a random integer-valued \(4 \times 4\) matrix \(A\).

  1. Reduce \(A\) to echelon form \(U\) with no row scaling, and use \(U\) in formula (1) (before Example 2) to compute \(\det A\). (If \(A\) happens to be singular, start over with a new random matrix.)
  2. Compute the eigenvalues of \(A\) and the product of these eigenvalues (as accurately as possible).
  3. List the matrix \(A\), and, to four decimal places, list the pivots in \(U\) and the eigenvalues of \(A\). Compute \(\det A\) with your matrix program, and compare it with the products you found in (a) and (b).
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free