The product of the diagonal entries of \(A\) becomes the determinant of a triangular matrix \(A\).
Use the above fact to obtain the eigenvalue of the matrix, as shown below.
\[\begin{array}\det \left( {A - \lambda I} \right) = \det \left[ {\begin{array}{*{20}{c}}{3 - \lambda }&0&0&0&0\\{ - 5}&{1 - \lambda }&0&0&0\\3&8&{0 - \lambda }&0&0\\0&{ - 7}&2&{1 - \lambda }&0\\{ - 4}&1&9&{ - 2}&{3 - \lambda }\end{array}} \right]\\ = \left( {3 - \lambda } \right)\left( {1 - \lambda } \right)\left( {0 - \lambda } \right)\left( {1 - \lambda } \right)\left( {3 - \lambda } \right)\\ = {\left( {3 - \lambda } \right)^2}{\left( {1 - \lambda } \right)^2}\left( { - \lambda } \right)\end{array}\]
Therefore, the eigenvalues of the matrix are \(3\left( {multiplicity\,\,2} \right),\) \(1\left( {multiplicity\,\,2} \right),\) and \(0\left( {multiplicity\,\,1} \right)\).
Thus, the eigenvalues of the matrix are \(3\), \(3\), \(1\), \(1\), and \(0\).