Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Exercises 9-14 require techniques section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for \(3 \times 3\) determinants described prior to Exercise 15-18 in Section 3.1. [Note: Finding the characteristic polynomial of a \(3 \times 3\) matrix is not easy to do with just row operations, because the variable \(\lambda \) is involved.

13. \(\left[ {\begin{array}{*{20}{c}}6&- 2&0\\- 2&9&0\\5&8&3\end{array}} \right]\)

Short Answer

Expert verified

The characteristic polynomial of the matrix is \( - {\lambda ^3} + 18{\lambda ^2} - 95\lambda + 150\).

Step by step solution

01

Definition of the characteristic polynomial

The eigenvalue of an \(n \times n\) matrix \(A\) is a scalar \(\lambda \) such that \(\lambda \) satisfies the characteristic equation \(\det \left( {A - \lambda I} \right) = 0\).

When \(A\) is an \(n \times n\) matrix, \(\det \left( {A - \lambda I} \right)\) is the characteristic polynomial of \(A\), which is the polynomial of degree \(n\).

02

Determine the characteristic polynomial of the matrix

Use the cofactor expression down the third column to obtain the characteristic polynomial of the matrix, as shown below.

\[\begin{array}\det \left( {A - \lambda I} \right) = \det \left[ {\begin{array}{*{20}{c}}{6 - \lambda }&{ - 2}&0\\{ - 2}&{9 - \lambda }&0\\5&8&{3 - \lambda }\end{array}} \right]\\ = \left( {3 - \lambda } \right)\det \left[ {\begin{array}{*{20}{c}}{6 - \lambda }&{ - 2}\\{ - 2}&{9 - \lambda }\end{array}} \right]\\ = \left( {3 - \lambda } \right)\left[ {\left( {6 - \lambda } \right)\left( {9 - \lambda } \right) - \left( { - 2} \right)\left( { - 2} \right)} \right]\\ = \left( {3 - \lambda } \right)\left( {{\lambda ^2} + - 15\lambda + 50} \right)\\ = - {\lambda ^3} + 18{\lambda ^2} - 95\lambda + 150\\ = \left( {3 - \lambda } \right)\left( {\lambda - 5} \right)\left( {\lambda - 10} \right)\end{array}\]

Thus, the characteristic polynomial of the matrix is \( - {\lambda ^3} + 18{\lambda ^2} - 95\lambda + 150\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Let \(A = \left( {\begin{array}{*{20}{c}}{.5}&{.2}&{.3}\\{.3}&{.8}&{.3}\\{.2}&0&{.4}\end{array}} \right)\), \({{\rm{v}}_1} = \left( {\begin{array}{*{20}{c}}{.3}\\{.6}\\{.1}\end{array}} \right)\), \({{\rm{v}}_2} = \left( {\begin{array}{*{20}{c}}1\\{ - 3}\\2\end{array}} \right)\), \({{\rm{v}}_3} = \left( {\begin{array}{*{20}{c}}{ - 1}\\0\\1\end{array}} \right)\) and \({\rm{w}} = \left( {\begin{array}{*{20}{c}}1\\1\\1\end{array}} \right)\).

  1. Show that \({{\rm{v}}_1}\), \({{\rm{v}}_2}\), and \({{\rm{v}}_3}\) are eigenvectors of \(A\). (Note: \(A\) is the stochastic matrix studied in Example 3 of Section 4.9.)
  2. Let \({{\rm{x}}_0}\) be any vector in \({\mathbb{R}^3}\) with non-negative entries whose sum is 1. (In section 4.9, \({{\rm{x}}_0}\) was called a probability vector.) Explain why there are constants \({c_1}\), \({c_2}\), and \({c_3}\) such that \({{\rm{x}}_0} = {c_1}{{\rm{v}}_1} + {c_2}{{\rm{v}}_2} + {c_3}{{\rm{v}}_3}\). Compute \({{\rm{w}}^T}{{\rm{x}}_0}\), and deduce that \({c_1} = 1\).
  3. For \(k = 1,2, \ldots ,\) define \({{\rm{x}}_k} = {A^k}{{\rm{x}}_0}\), with \({{\rm{x}}_0}\) as in part (b). Show that \({{\rm{x}}_k} \to {{\rm{v}}_1}\) as \(k\) increases.

Question: Let \(A = \left( {\begin{array}{*{20}{c}}{ - 6}&{28}&{21}\\4&{ - 15}&{ - 12}\\{ - 8}&a&{25}\end{array}} \right)\). For each value of \(a\) in the set \(\left\{ {32,31.9,31.8,32.1,32.2} \right\}\), compute the characteristic polynomial of \(A\) and the eigenvalues. In each case, create a graph of the characteristic polynomial \(p\left( t \right) = \det \left( {A - tI} \right)\) for \(0 \le t \le 3\). If possible, construct all graphs on one coordinate system. Describe how the graphs reveal the changes in the eigenvalues of \(a\) changes.

Question: For the matrices in Exercises 15-17, list the eigenvalues, repeated according to their multiplicities.

16. \(\left[ {\begin{array}{*{20}{c}}5&0&0&0\\8&- 4&0&0\\0&7&1&0\\1&{ - 5}&2&1\end{array}} \right]\)

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

14. \(\left( {\begin{array}{*{20}{c}}4&0&{ - 2}\\2&5&4\\0&0&5\end{array}} \right)\)

Suppose \({\bf{x}}\) is an eigenvector of \(A\) corresponding to an eigenvalue \(\lambda \).

a. Show that \(x\) is an eigenvector of \(5I - A\). What is the corresponding eigenvalue?

b. Show that \(x\) is an eigenvector of \(5I - 3A + {A^2}\). What is the corresponding eigenvalue?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free