Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Exercises 9-14 require techniques section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for \(3 \times 3\) determinants described prior to Exercise 15-18 in Section 3.1. [Note: Finding the characteristic polynomial of a \(3 \times 3\) matrix is not easy to do with just row operations, because the variable \(\lambda \) is involved.

12. \(\left[ {\begin{array}{*{20}{c}}- 1&0&1\\- 3&4&1\\0&0&2\end{array}} \right]\)

Short Answer

Expert verified

The characteristic polynomial of the matrix is \( - {\lambda ^3} + 5{\lambda ^2} - 2\lambda - 8\).

Step by step solution

01

Definition of the characteristic polynomial

The eigenvalue of an \(n \times n\) matrix \(A\) is a scalar \(\lambda \) such that \(\lambda \) satisfies the characteristic equation \(\det \left( {A - \lambda I} \right) = 0\).

When \(A\) is an \(n \times n\) matrix, \(\det \left( {A - \lambda I} \right)\) is the characteristic polynomial of \(A\), which is the polynomial of degree \(n\).

02

Determine the characteristic polynomial of the matrix

Use the cofactor expression along the third row to obtain the characteristic polynomial of the matrix, as shown below.

\[\begin{array}\det \left( {A - \lambda I} \right) = \det \left[ {\begin{array}{*{20}{c}}{ - 1 - \lambda }&0&1\\{ - 3}&{4 - \lambda }&1\\0&0&{2 - \lambda }\end{array}} \right]\\ = \left( {2 - \lambda } \right)\det \left[ {\begin{array}{*{20}{c}}{ - 1 - \lambda }&0\\{ - 3}&{4 - \lambda }\end{array}} \right]\\ = \left( {2 - \lambda } \right)\left( { - 1 - \lambda } \right)\left( {4 - \lambda } \right)\\ = \left( {2 - \lambda } \right)\left( { - 4 - 3\lambda + {\lambda ^2}} \right)\\ = - {\lambda ^3} + 5{\lambda ^2} - 2\lambda - 8\end{array}\]

Thus, the characteristic polynomial of the matrix is \( - {\lambda ^3} + 5{\lambda ^2} - 2\lambda - 8\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

7. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{6}}&{{\bf{ - 1}}}\end{array}} \right)\)

Question: Exercises 9-14 require techniques section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for \(3 \times 3\) determinants described prior to Exercise 15-18 in Section 3.1. [Note: Finding the characteristic polynomial of a \(3 \times 3\) matrix is not easy to do with just row operations, because the variable \(\lambda \) is involved.

13. \(\left[ {\begin{array}{*{20}{c}}6&- 2&0\\- 2&9&0\\5&8&3\end{array}} \right]\)

Question: In Exercises 21 and 22, \(A\) and \(B\) are \(n \times n\) matrices. Mark each statement True or False. Justify each answer.

  1. If \(A\) is \(3 \times 3\), with columns \({{\rm{a}}_1}\), \({{\rm{a}}_2}\), and \({{\rm{a}}_3}\), then \(\det A\) equals the volume of the parallelepiped determined by \({{\rm{a}}_1}\), \({{\rm{a}}_2}\), and \({{\rm{a}}_3}\).
  2. \(\det {A^T} = \left( { - 1} \right)\det A\).
  3. The multiplicity of a root \(r\) of the characteristic equation of \(A\) is called the algebraic multiplicity of \(r\) as an eigenvalue of \(A\).
  4. A row replacement operation on \(A\) does not change the eigenvalues.

Question: In Exercises 21 and 22, \(A\) and \(B\) are \(n \times n\) matrices. Mark each statement True or False. Justify each answer.

  1. The determinant of \(A\) is the product of the diagonal entries in \(A\).
  2. An elementary row operation on \(A\) does not change the determinant.
  3. \(\left( {\det A} \right)\left( {\det B} \right) = \det AB\)
  4. If \(\lambda + 5\) is a factor of the characteristic polynomial of \(A\), then 5 is an eigenvalue of \(A\).

Question: For the matrices in Exercises 15-17, list the eigenvalues, repeated according to their multiplicities.

15. \(\left[ {\begin{array}{*{20}{c}}4&- 7&0&2\\0&3&- 4&6\\0&0&3&{ - 8}\\0&0&0&1\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free