Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Is \(\left( {\begin{array}{*{20}{c}}{ - 1 + \sqrt 2 }\\1\end{array}} \right)\) an eigenvalue of \(\left( {\begin{array}{*{20}{c}}2&1\\1&4\end{array}} \right)\)? If so, find the eigenvalue.

Short Answer

Expert verified

Yes, \(\left( {\begin{array}{*{20}{c}}{ - 1 + \sqrt 2 }\\1\end{array}} \right)\) is the eigenvector of the given matrix \(\left( {\begin{array}{*{20}{c}}2&1\\1&4\end{array}} \right)\) and the eigenvalue is \(3 + \sqrt 2 \).

Step by step solution

01

Definition of eigenvector

If there exists a non-zero vector \({\bf{x}}\) which satisfies \(A{\bf{x}} = \lambda {\bf{x}}\) for some scaler \(\lambda \), then \({\bf{x}}\) be the eigenvector of an \(n \times n\) matrix \(A\), and if \(A{\bf{x}} = \lambda {\bf{x}}\) exists then scaler \(\lambda \) is the eigenvalue of the matrix.

02

Determine whether \(\left( {\begin{array}{*{20}{c}}{ - 1 + \sqrt 2 }\\1\end{array}} \right)\) is the eigenvector of given matrix

Denote the given matrix by \(A\) and the given vector by \({\bf{x}}\).

\(A = \left( {\begin{array}{*{20}{c}}2&1\\1&4\end{array}} \right)\), \({\bf{x}} = \left( {\begin{array}{*{20}{c}}{ - 1 + \sqrt 2 }\\1\end{array}} \right)\)

According to the definition of eigenvalue, \({\bf{x}} = \left( {\begin{array}{*{20}{c}}{ - 1 + \sqrt 2 }\\1\end{array}} \right)\) is the eigenvector of the matrix \(A\), if \(A{\bf{x}} = \lambda {\bf{x}}\).

Find the product of \(A\), and \({\bf{x}}\).

\(\begin{array}{c}A{\bf{x}} = \left( {\begin{array}{*{20}{c}}2&1\\1&4\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - 1 + \sqrt 2 }\\1\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{2\left( { - 1 + \sqrt 2 } \right) + 1\left( 1 \right)}\\{1\left( { - 1 + \sqrt 2 } \right) + 4\left( 1 \right)}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - 1 + 2\sqrt 2 }\\{3 + \sqrt 2 }\end{array}} \right)\end{array}\)

The obtained matrix in the form of given vector can be written as:

\(A{\bf{x}} = \left( {3 + \sqrt 2 } \right) \cdot \left( {\begin{array}{*{20}{c}}{ - 1 + \sqrt 2 }\\1\end{array}} \right)\)

Because,

\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}{\left( {3 + \sqrt 2 } \right)\left( { - 1 + \sqrt 2 } \right)}\\{\left( {3 + \sqrt 2 } \right)\left( 1 \right)}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{ - 3 + {{\left( {\sqrt 2 } \right)}^2} + 2\sqrt 2 }\\{3 + \sqrt 2 }\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - 1 + 2\sqrt 2 }\\{3 + \sqrt 2 }\end{array}} \right)\\ = A{\bf{x}}\end{array}\)

So, the vector \(\left( {\begin{array}{*{20}{c}}{ - 1 + \sqrt 2 }\\1\end{array}} \right)\) is the eigenvector of the given matrix \(\left( {\begin{array}{*{20}{c}}2&1\\1&4\end{array}} \right)\).

03

Determine the eigenvalue 

As the given vector satisfies the condition \(A{\bf{x}} = \lambda {\bf{x}}\). Which imply that \(\lambda \) is the eigenvalue of the given matrix. So, \(\lambda = 3 + \sqrt 2 \).

So, \(3 + \sqrt 2 \) is the eigenvalue of the given matrix \(\left( {\begin{array}{*{20}{c}}2&1\\1&4\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

19. Write the companion matrix \({C_p}\) for \(p\left( t \right) = {\bf{6}} - {\bf{5}}t + {t^{\bf{2}}}\), and then find the characteristic polynomial of \({C_p}\).

Question: Exercises 9-14 require techniques section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for \(3 \times 3\) determinants described prior to Exercise 15-18 in Section 3.1. [Note: Finding the characteristic polynomial of a \(3 \times 3\) matrix is not easy to do with just row operations, because the variable \(\lambda \) is involved.

13. \(\left[ {\begin{array}{*{20}{c}}6&- 2&0\\- 2&9&0\\5&8&3\end{array}} \right]\)

For the matrices A in Exercises 1 through 12, find closed formulas for , where t is an arbitrary positive integer. Follow the strategy outlined in Theorem 7.4.2 and illustrated in Example 2. In Exercises 9 though 12, feel free to use technology.

1.A=1203

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

16. \(\left( {\begin{array}{*{20}{c}}{\bf{0}}&{{\bf{ - 4}}}&{{\bf{ - 6}}}\\{{\bf{ - 1}}}&{\bf{0}}&{{\bf{ - 3}}}\\{\bf{1}}&{\bf{2}}&{\bf{5}}\end{array}} \right)\)

Question: In Exercises \({\bf{1}}\) and \({\bf{2}}\), let \(A = PD{P^{ - {\bf{1}}}}\) and compute \({A^{\bf{4}}}\).

1. \(P{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{7}}\\{\bf{2}}&{\bf{3}}\end{array}} \right)\), \(D{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{2}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free