Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{array}{*{20}{c}}4\\6\end{array}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{array}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{array}{*{20}{c}}6\\{ - 2}\\3\end{array}} \right)\)

3. \(\frac{1}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{\mathop{\rm w}\nolimits} \)

Short Answer

Expert verified

The value is \(\frac{1}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}{\frac{3}{{35}}}\\{ - \frac{1}{{35}}}\\{ - \frac{1}{7}}\end{array}} \right)\).

Step by step solution

01

Inner product

Consider \({\mathop{\rm u}\nolimits} ,v,\) and \({\mathop{\rm w}\nolimits} \) as the vectors in \({\mathbb{R}^n}\) and consider \(c\) as the scalar. Then

  1. \({\mathop{\rm u}\nolimits} \cdot {\mathop{\rm v}\nolimits} = {\mathop{\rm v}\nolimits} \cdot {\mathop{\rm u}\nolimits} \)
  2. \(\left( {{\mathop{\rm u}\nolimits} + {\mathop{\rm v}\nolimits} } \right) \cdot {\mathop{\rm w}\nolimits} = {\mathop{\rm u}\nolimits} \cdot {\mathop{\rm v}\nolimits} + {\mathop{\rm v}\nolimits} \cdot {\mathop{\rm w}\nolimits} \)
  3. \(\left( {c{\mathop{\rm u}\nolimits} } \right) \cdot {\mathop{\rm v}\nolimits} = c\left( {{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm v}\nolimits} } \right) = {\mathop{\rm u}\nolimits} \cdot \left( {c{\mathop{\rm v}\nolimits} } \right)\)
  4. \({\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} \ge 0\)and \({\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} = 0\) if and only if \({\mathop{\rm u}\nolimits} = 0\).
02

Compute

\(\frac{1}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{\mathop{\rm w}\nolimits} \)

It is given that \({\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{array}} \right)\).

Evaluate \({\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} \) as shown below:

\(\begin{array}{c}{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} &= \left( {\begin{array}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{array}} \right)\left( {\begin{array}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{array}} \right)\\ &= {3^2} + {\left( { - 1} \right)^2} + {\left( { - 5} \right)^2}\\ &= 9 + 1 + 25\\ = 35\end{array}\)

Compute \(\frac{1}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{\mathop{\rm w}\nolimits} \) as shown below:

\(\begin{array}{c}\frac{1}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{\mathop{\rm w}\nolimits} &= \frac{1}{{35}}\left( {\begin{array}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{array}} \right)\\ &= \left( {\begin{array}{*{20}{c}}{\frac{3}{{35}}}\\{\frac{{ - 1}}{{35}}}\\{\frac{{ - 5}}{{35}}}\end{array}} \right)\\ &= \left( {\begin{array}{*{20}{c}}{\frac{3}{{35}}}\\{\frac{{ - 1}}{{35}}}\\{\frac{{ - 1}}{7}}\end{array}} \right)\end{array}\)

Thus, the value is \(\frac{1}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}{\frac{3}{{35}}}\\{ - \frac{1}{{35}}}\\{ - \frac{1}{7}}\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises \({\bf{5}}\) and \({\bf{6}}\), the matrix \(A\) is factored in the form \(PD{P^{ - {\bf{1}}}}\). Use the Diagonalization Theorem to find the eigenvalues of \(A\) and a basis for each eigenspace.

5. \(\left( {\begin{array}{*{20}{c}}2&2&1\\1&3&1\\1&2&2\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&1&2\\1&0&{ - 1}\\1&{ - 1}&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}5&0&0\\0&1&0\\0&0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\frac{1}{4}}&{\frac{1}{2}}&{\frac{1}{4}}\\{\frac{1}{4}}&{\frac{1}{2}}&{ - \frac{3}{4}}\\{\frac{1}{4}}&{ - \frac{1}{2}}&{\frac{1}{4}}\end{array}} \right)\)

Question: Is \(\left( {\begin{array}{*{20}{c}}{ - 1 + \sqrt 2 }\\1\end{array}} \right)\) an eigenvalue of \(\left( {\begin{array}{*{20}{c}}2&1\\1&4\end{array}} \right)\)? If so, find the eigenvalue.

If \(p\left( t \right) = {c_0} + {c_1}t + {c_2}{t^2} + ...... + {c_n}{t^n}\), define \(p\left( A \right)\) to be the matrix formed by replacing each power of \(t\) in \(p\left( t \right)\)by the corresponding power of \(A\) (with \({A^0} = I\) ). That is,

\(p\left( t \right) = {c_0} + {c_1}I + {c_2}{I^2} + ...... + {c_n}{I^n}\)

Show that if \(\lambda \) is an eigenvalue of A, then one eigenvalue of \(p\left( A \right)\) is\(p\left( \lambda \right)\).

Let \(A{\bf{ = }}\left( {\begin{aligned}{*{20}{c}}{{a_{{\bf{11}}}}}&{{a_{{\bf{12}}}}}\\{{a_{{\bf{21}}}}}&{{a_{{\bf{22}}}}}\end{aligned}} \right)\). Recall from Exercise \({\bf{25}}\) in Section \({\bf{5}}{\bf{.4}}\) that \({\rm{tr}}\;A\) (the trace of \(A\)) is the sum of the diagonal entries in \(A\). Show that the characteristic polynomial of \(A\) is \({\lambda ^2} - \left( {{\rm{tr}}A} \right)\lambda + \det A\). Then show that the eigenvalues of a \({\bf{2 \times 2}}\) matrix \(A\) are both real if and only if \(\det A \le {\left( {\frac{{{\rm{tr}}A}}{2}} \right)^2}\).

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

8. \(\left[ {\begin{array}{*{20}{c}}7&- 2\\2&3\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free