Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Repeat Exercise 35, assuming u and v are eigenvectors of A that correspond to eigenvalues -1 and 3, respectively.

Short Answer

Expert verified

The image is given below:

Step by step solution

01

Plot \(T\left( {\rm{u}} \right) =  - {\rm{u}}\)

With the help of the given figure in the exercise, draw \( - u\) because it is given that \(u\) is an eigenvector of matrix A that corresponds to eigenvalue -1.

02

Plot \(T\left( {\rm{v}} \right) = 3{\rm{v}}\)

Similarly, with the help of the given figure in the exercise, draw \(3v\) because it is given that \(u\) is an eigenvector of matrix A that corresponds to eigenvalue 3.

03

Plot \(T\left( {\rm{w}} \right)\)

It is given that \(w = u + v\), since \(T\) is linear transformation given by \(T\left( x \right) = Ax\).

So, \(T\left( w \right)\) can be obtained as follows:

\(\begin{array}{c}T\left( w \right) = T\left( {u + v} \right)\\ = A\left( {u + v} \right)\\ = A\left( u \right) + A\left( v \right)\\ = T\left( u \right) + T\left( v \right)\end{array}\)

Now, the plot \(T\left( w \right) = T\left( u \right) + T\left( v \right)\) as given in the image below:

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Is \(\left( {\begin{array}{*{20}{c}}1\\4\end{array}} \right)\) an eigenvalue of \(\left( {\begin{array}{*{20}{c}}{ - 3}&1\\{ - 3}&8\end{array}} \right)\)? If so, find the eigenvalue.

Show that if \(A\) is diagonalizable, with all eigenvalues less than 1 in magnitude, then \({A^k}\) tends to the zero matrix as \(k \to \infty \). (Hint: Consider \({A^k}x\) where \(x\) represents any one of the columns of \(I\).)

Consider an invertible n × n matrix A such that the zero state is a stable equilibrium of the dynamical system x(t+1)=Ax(t)What can you say about the stability of the systems

x(t+1)=-Ax(t)

Question: Is \(\left( {\begin{array}{*{20}{c}}1\\{ - 2}\\1\end{array}} \right)\) an eigenvector of\(\left){\begin{array}{*{20}{c}}3&6&7\\3&3&7\\5&6&5\end{array}} \right)\)? If so, find the eigenvalue.

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

20. Let \(p\left( t \right){\bf{ = }}\left( {t{\bf{ - 2}}} \right)\left( {t{\bf{ - 3}}} \right)\left( {t{\bf{ - 4}}} \right){\bf{ = - 24 + 26}}t{\bf{ - 9}}{t^{\bf{2}}}{\bf{ + }}{t^{\bf{3}}}\). Write the companion matrix for \(p\left( t \right)\), and use techniques from chapter \({\bf{3}}\) to find the characteristic polynomial.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free