Chapter 5: Q36E (page 267)
Question: Repeat Exercise 35, assuming u and v are eigenvectors of A that correspond to eigenvalues -1 and 3, respectively.
Short Answer
The image is given below:
Chapter 5: Q36E (page 267)
Question: Repeat Exercise 35, assuming u and v are eigenvectors of A that correspond to eigenvalues -1 and 3, respectively.
The image is given below:
All the tools & learning materials you need for study success - in one app.
Get started for freeQuestion: Is \(\left( {\begin{array}{*{20}{c}}1\\4\end{array}} \right)\) an eigenvalue of \(\left( {\begin{array}{*{20}{c}}{ - 3}&1\\{ - 3}&8\end{array}} \right)\)? If so, find the eigenvalue.
Show that if \(A\) is diagonalizable, with all eigenvalues less than 1 in magnitude, then \({A^k}\) tends to the zero matrix as \(k \to \infty \). (Hint: Consider \({A^k}x\) where \(x\) represents any one of the columns of \(I\).)
Consider an invertible n × n matrix A such that the zero state is a stable equilibrium of the dynamical system What can you say about the stability of the systems
Question: Is \(\left( {\begin{array}{*{20}{c}}1\\{ - 2}\\1\end{array}} \right)\) an eigenvector of\(\left){\begin{array}{*{20}{c}}3&6&7\\3&3&7\\5&6&5\end{array}} \right)\)? If so, find the eigenvalue.
Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).
20. Let \(p\left( t \right){\bf{ = }}\left( {t{\bf{ - 2}}} \right)\left( {t{\bf{ - 3}}} \right)\left( {t{\bf{ - 4}}} \right){\bf{ = - 24 + 26}}t{\bf{ - 9}}{t^{\bf{2}}}{\bf{ + }}{t^{\bf{3}}}\). Write the companion matrix for \(p\left( t \right)\), and use techniques from chapter \({\bf{3}}\) to find the characteristic polynomial.
What do you think about this solution?
We value your feedback to improve our textbook solutions.