Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Consider an \(n \times n\) matrix A with the property that the columns sums all equal the same number s. Show that s is an eigenvalue of A. (Hint: Use Exercises 27 and 29.)

Short Answer

Expert verified

It is proved that s is an eigenvalue of A.

Step by step solution

01

Assume the matrix A

Let the matrix A is:

\(A = \left( {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\{{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}}\\ \ldots & \cdots & \cdots & \cdots \\{{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{mn}}}\end{array}} \right)\)

For the elements of all the rows, the given property is:

\(\sum {{a_{i1}}} = \sum {{a_{i2}}} = .....\sum {{a_{i2}}} = s\)

For \(i = 1,2,.....,n\).

02

Check whether s is the eigenvalue of A

Let the eigenvector be:

\(v = \left( {\begin{array}{*{20}{c}}1\\1\\ \vdots \\1\end{array}} \right)\)

Using the characteristic equation:

\(\begin{array}{c}A{\bf{v}} = \left( {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}}\\{{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}}\\ \ldots & \cdots & \cdots & \cdots \\{{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{mn}}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}1\\1\\ \vdots \\1\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{\sum {{a_n}} }\\{\sum {{a_{i2}}} }\\ \vdots \\{\sum {{a_{in}}} }\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}s\\s\\ \vdots \\s\end{array}} \right)\\ = s\left( {\begin{array}{*{20}{c}}1\\1\\ \vdots \\1\end{array}} \right)\\ = s{\bf{v}}\end{array}\)

Therefore, s is an eigenvalue of matrix A.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use mathematical induction to show that if \(\lambda \) is an eigenvalue of an \(n \times n\) matrix \(A\), with a corresponding eigenvector, then, for each positive integer \(m\), \({\lambda ^m}\)is an eigenvalue of \({A^m}\), with \({\rm{x}}\) a corresponding eigenvector.

Let \({\bf{u}}\) be an eigenvector of \(A\) corresponding to an eigenvalue \(\lambda \), and let \(H\) be the line in \({\mathbb{R}^{\bf{n}}}\) through \({\bf{u}}\) and the origin.

  1. Explain why \(H\) is invariant under \(A\) in the sense that \(A{\bf{x}}\) is in \(H\) whenever \({\bf{x}}\) is in \(H\).
  2. Let \(K\) be a one-dimensional subspace of \({\mathbb{R}^{\bf{n}}}\) that is invariant under \(A\). Explain why \(K\) contains an eigenvector of \(A\).

Question: Is \(\left( {\begin{array}{*{20}{c}}4\\{ - 3}\\1\end{array}} \right)\) an eigenvector of \(\left( {\begin{array}{*{20}{c}}3&7&9\\{ - 4}&{ - 5}&1\\2&4&4\end{array}} \right)\)? If so, find the eigenvalue.

Apply the results of Exercise \({\bf{15}}\) to find the eigenvalues of the matrices \(\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{2}}\\{\bf{2}}&{\bf{1}}&{\bf{2}}\\{\bf{2}}&{\bf{2}}&{\bf{1}}\end{aligned}} \right)\) and \(\left( {\begin{aligned}{*{20}{c}}{\bf{7}}&{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{7}}&{\bf{3}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{7}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{7}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{7}}\end{aligned}} \right)\).

For the Matrices A find real closed formulas for the trajectory x(t+1)=Ax(t)where x(0)=[01]

A=[43-34]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free